combination without repetition of N elements without use for..to..do

前端 未结 6 1189
野的像风
野的像风 2020-12-29 11:08

i want load in a list the combination of N number without repetition, giving to input the elements and group. For example, with 4 elements [1,2,3,4], i have for:

<         


        
相关标签:
6条回答
  • 2020-12-29 11:24

    Here's a rather fun solution reliant on bitsets. As it stands it's limited to sets of size not greater than 32. I don't think that's a practical limitation since there are a lot of subsets for a set of cardinality greater than 32.

    The output is not in the order that you want, but that would be easy enough to remedy if it matters to you.

    program VisitAllSubsetsDemo;
    
    {$APPTYPE CONSOLE}
    
    procedure PrintBitset(Bitset: Cardinal; Size: Integer);
    var
      i: Integer;
      Mask: Cardinal;
      SepNeeded: Boolean;
    begin
      SepNeeded := False;
      Write('{');
      for i := 1 to Size do begin
        Mask := 1 shl (i-1);
        if Bitset and Mask<>0 then begin
          if SepNeeded then begin
            Write(',');
          end;
          Write(i);
          SepNeeded := True;
        end;
      end;
      Writeln('}');
    end;
    
    procedure EnumerateSubsets(Size: Integer);
    var
      Bitset: Cardinal;
    begin
      for Bitset := 0 to (1 shl Size)-1 do begin
        PrintBitset(Bitset, Size);
      end;
    end;
    
    begin
      EnumerateSubsets(4);
    end.
    

    Output

    {}
    {1}
    {2}
    {1,2}
    {3}
    {1,3}
    {2,3}
    {1,2,3}
    {4}
    {1,4}
    {2,4}
    {1,2,4}
    {3,4}
    {1,3,4}
    {2,3,4}
    {1,2,3,4}
    

    And here is a variant that just lists the subsets of a specified cardinality:

    function SetBitCount(Bitset: Cardinal; Size: Integer): Integer;
    var
      i: Integer;
      Mask: Cardinal;
    begin
      Result := 0;
      for i := 1 to Size do begin
        Mask := 1 shl (i-1);
        if Bitset and Mask<>0 then begin
          inc(Result);
        end;
      end;
    end;
    
    procedure EnumerateSubsets(Size, NumberOfSetBits: Integer);
    var
      Bitset: Cardinal;
    begin
      for Bitset := 0 to (1 shl Size)-1 do begin
        if SetBitCount(Bitset, Size)=NumberOfSetBits then begin
          PrintBitset(Bitset, Size);
        end;
      end;
    end;
    
    begin
      EnumerateSubsets(4, 2);
    end.
    

    Output

    {1,2}
    {1,3}
    {2,3}
    {1,4}
    {2,4}
    {3,4}
    
    0 讨论(0)
  • 2020-12-29 11:30

    Unless you can't make function calls by some requirement, do this:

    select_n_from_list(int *selected, int n, int *list, int list_size):
        if (n==0) {
            // print all numbers from selected by traversing backward
            // you can set the head to a special value or make the head location
            // a static variable for lookup
        }
    
        for (int i=0; i<=list_size-n; i++) {
            *selected = list[i];
            select_n_from_list(selected+1, n-1, list+i+1, list_size-i-1);
        }
    }
    

    You really need some sort of recursion because you need automatic storage for intermediate results. Let me know if there's special requirement that makes this solution don't work.

    0 讨论(0)
  • 2020-12-29 11:32

    I created this script here and worked very well:

    $(document).ready(function(){
        $("#search").on('click', function(){
            var value = $("#fieldArray").val().split(",");
            var results = new SearchCombinations(value);
            var output = "";
            for(var $i = 0; $i< results.length;$i++){
            	results[$i] = results[$i].join(",");
                output +="<li>"+results[$i]+"</li>";
            }
            $("#list").html(output);
        });
    });
    
    /*Helper Clone*/
    var Clone = function (data) {
        return JSON.parse(JSON.stringify(data));
    }
    
    /*Script of Search All Combinations without repetitions. Ex: [1,2,3]*/
    var SearchCombinations = function (statesArray) {
        var combinations = new Array(),
            newValue = null,
            arrayBeforeLevel = new Array(),
            $level = 0,
            array = new Clone(statesArray),
            firstInteration = true,
            indexFirstInteration = 0,
            sizeValues = array.length,
            totalSizeValues = Math.pow(2, array.length) - 1;
        array.sort();
        combinations = new Clone(array);
        arrayBeforeLevel = new Clone(array);
        loopLevel: while ($level < arrayBeforeLevel.length) {
            for (var $i = 0; $i < array.length; $i++) {
                newValue = arrayBeforeLevel[$level] + "," + array[$i];
                newValue = newValue.split(",");
                newValue.sort();
                newValue = newValue.join(",");
                if (combinations.indexOf(newValue) == -1 && arrayBeforeLevel[$level].toString().indexOf(array[$i]) == -1) {
                    if (firstInteration) {
                        firstInteration = false;
                        indexFirstInteration = combinations.length
                    }
                    sizeValues++;
                    combinations.push(newValue);
                    if (sizeValues == totalSizeValues) {
                        break loopLevel;
                    }
                }
            }
            $level++;
            if ($level == arrayBeforeLevel.length) {
                firstInteration = true;
                arrayBeforeLevel = new Clone(combinations);
                arrayBeforeLevel = arrayBeforeLevel.splice(indexFirstInteration);
                indexFirstInteration = 0;
                $level = 0;
            }
        }
        for (var $i = 0; $i < combinations.length; $i++) {
            combinations[$i] = combinations[$i].toString().split(",");
        }
        return combinations;
    }
    *{font-family: Arial;font-size:14px;}
    small{font-size:11px}
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
    <label for="">
        <input type="text" id="fieldArray">
        <button id="search">Search</button>
        <br><small>Info the elements. Ex: "a,b,c"</small>
    </label>
    <hr>
    <ul id="list"></ul>

    0 讨论(0)
  • 2020-12-29 11:39

    This seems to be a question that comes up over and over and a few bits of code are kicking about that address the problem. A very nice algorithm in some code has been written but it wasn't strictly clean C and not portable across UNIX or Linux or any POSIX system, therefore I cleaned it up and added warning messages, usage and the ability to provide a set size and sub_set size on the command line. Also comb[] has been transitioned to a more general pointer to an array of integers and calloc used to zero out the memory needed for whatever set size one may want.

    The following is ISO IEC 9899:1999 C clean :

    /*********************************************************************
     * The Open Group Base Specifications Issue 6
     * IEEE Std 1003.1, 2004 Edition
     *
     *    An XSI-conforming application should ensure that the feature 
     *    test macro _XOPEN_SOURCE is defined with the value 600 before 
     *    inclusion of any header. This is needed to enable the 
     *    functionality described in The _POSIX_C_SOURCE Feature Test 
     *    Macro and in addition to enable the XSI extension.
     *
     * Compile with c99 or with gcc and CFLAGS to include options 
     * -std=iso9899:199409 -pedantic-errors in order to ensure compliance
     * with ISO IEC 9899:1999 C spec. 
     *
     * Code cleanup and transition to comb as a pointer to type ( int * ) 
     * array by Dennis Clarke dclarke@blastwave.org  28 Dec 2012 
     *
     *********************************************************************/
    #define _XOPEN_SOURCE 600
    
    #include <stdio.h>
    #include <stdlib.h>
    
    /* Prints out a combination like {1, 2} */
    void printc( int *comb, int k) {
    
        int j;
        printf("{ ");
    
        for ( j = 0; j < k; ++j )
            printf("%d , ", *( comb + j ) + 1 );
    
        printf( "\b\b}\n" );
    
    } /* printc */
    
    /**********************************************************************
        next_comb(int comb[], int k, int n)
        Generates the next combination of n elements as k after comb
    
        comb => the previous combination ( use (0, 1, 2, ..., k) for first)
        k => the size of the subsets to generate
        n => the size of the original set
    
        Returns: 1 if a valid combination was found
        0, otherwise
    **********************************************************************/
    
    int next_comb( int *comb, int k, int n) {
    
        int i = k - 1;
        ++*( comb + i );
        while ( ( i >= 0 ) && ( *( comb + i ) >= n - k + 1 + i ) ) {
            --i;
            ++*( comb + i );
        }
    
        if ( *comb > n - k) /* Combination (n-k, n-k+1, ..., n) reached */
            return 0; /* No more combinations can be generated */
    
        /* comb now looks like (..., x, n, n, n, ..., n).
         * Turn it into (..., x, x + 1, x + 2, ...) */
        for (i = i + 1; i < k; ++i)
            *( comb + i ) = *( comb + ( i - 1 ) ) + 1;
    
        return 1;
    
    } /* next_comb */
    
    int main(int argc, char *argv[]) {
    
        int *comb, i, n, k;
    
        n = 9; /* The size of the set; for {1, 2, 3, 4} it's 4 */
        k = 6; /* The size of the subsets; for {1, 2}, {1, 3}, .. it's 2 */
    
        if ( argc < 3 ) { 
            printf ( "\nUSAGE : %s n k\n", argv[0] );
            printf ( "      : Where n is the set size and k the sub set size.\n" );
            printf ( "      : Note that k <= n\n" );
            return ( EXIT_FAILURE );
        }
    
        n = atoi ( argv[1] );
        k = atoi ( argv[2] );
    
        if ( k > n ) {
            printf ( "\nWARN  : k > n is not allowed.\n" );
            printf ( "USAGE : %s n k\n", argv[0] );
            printf ( "      : Where n is the set size and k the sub set size.\n" );
            printf ( "      : Note that k <= n\n" );
            return ( EXIT_FAILURE );
        }
    
        comb = ( int * ) calloc( (size_t) k, sizeof(int) );
    
        for ( i = 0; i < k; ++i)
            *( comb + i ) = i;
    
        /* Print the first combination */
        printc( comb, k );
    
        /* Generate and print all the other combinations */
        while ( next_comb( comb, k, n ) )
            printc( comb, k );
    
        free ( comb );
    
        return ( EXIT_SUCCESS );
    
    }
    

    One may compile the above on an Opteron based machine thus :

    $ echo $CFLAGS 
    -m64 -g -malign-double -std=iso9899:199409 -pedantic-errors -mno-mmx 
    -mno-sse -fexceptions -fpic -fvisibility=default -mtune=opteron 
    -march=opteron -m128bit-long-double -mpc80 -Wl,-q
    $ gcc $CFLAGS -o combinations combinations.c 
    

    A quick trivial test with a set size of 10 and a sub-set of 6 will be thus :

    $ ./combinations 10 6 | wc -l 
    210
    

    The math is correct :

     ( 10 ! ) / ( ( 10 - 6 )!  *  ( 6! ) )  =   210 unique combinations. 
    

    Now that the integer array comb is based on a pointer system we are only restricted by available memory and time. Therefore we have the following :

    $ /usr/bin/time -p ./combinations 20 6 | wc -l 
    real 0.11
    user 0.10
    sys 0.00
    38760
    

    This looks correct :

    ( 20 ! ) / ( ( 20 - 6 )!  *  ( 6! ) )  = 38,760 unique combinations
    

    We may now push the limits a bit thus :

    $ ./combinations 30 24 | wc -l 
    593775
    

    Again the math agrees with the result :

    ( 30 ! ) / ( ( 30 - 24 )!  *  ( 24! ) )  =  593 775 unique combinations
    

    Feel free to push the limits of your system :

    $ /usr/bin/time -p ./combinations 30 22 | wc -l  
    real 18.62
    user 17.76
    sys 0.83
    5852925
    

    I have yet to try anything larger but the math looks correct as well as the output thus far. Feel free to let me know if some correction is needed.

    Dennis Clarke dclarke@blastwave.org 28 Dec 2012

    0 讨论(0)
  • 2020-12-29 11:44

    Following the link that David posted and clicking around led me to an article where they coin the term "Banker's Search", which seems to fit your pattern.

    The article provides an example solution in C++, utilizing recursion:

    Efficiently Enumerating the Subsets of a Set

    0 讨论(0)
  • 2020-12-29 11:47

    It seems you are looking for a fast algorithm to calculate all k-combinations. The following Delphi code is a direct translation of the C code found here: Generating Combinations. I even fixed a bug in that code!

    program kCombinations;
    
    {$APPTYPE CONSOLE}
    
    // Prints out a combination like {1, 2}
    procedure printc(const comb: array of Integer; k: Integer);
    var
      i: Integer;
    begin
        Write('{');
        for i := 0 to k-1 do
      begin
        Write(comb[i]+1);
        if i<k-1 then
          Write(',');
      end;
        Writeln('}');
    end;
    
    (*
    Generates the next combination of n elements as k after comb
      comb => the previous combination ( use (0, 1, 2, ..., k) for first)
      k => the size of the subsets to generate
      n => the size of the original set
    
      Returns: True if a valid combination was found, False otherwise
    *)
    function next_comb(var comb: array of Integer; k, n: Integer): Boolean;
    var
      i: Integer;
    begin
        i := k - 1;
        inc(comb[i]);
        while (i>0) and (comb[i]>=n-k+1+i) do
      begin
        dec(i);
            inc(comb[i]);
        end;
    
        if comb[0]>n-k then// Combination (n-k, n-k+1, ..., n) reached
      begin
        // No more combinations can be generated
        Result := False;
        exit;
      end;
    
        // comb now looks like (..., x, n, n, n, ..., n).
        // Turn it into (..., x, x + 1, x + 2, ...)
        for i := i+1 to k-1 do
            comb[i] := comb[i-1]+1;
    
      Result := True;
    end;
    
    procedure Main;
    const
        n = 4;// The size of the set; for {1, 2, 3, 4} it's 4
        k = 2;// The size of the subsets; for {1, 2}, {1, 3}, ... it's 2
    var
      i: Integer;
      comb: array of Integer;
    begin
      SetLength(comb, k);// comb[i] is the index of the i-th element in the combination
    
        //Setup comb for the initial combination
      for i := 0 to k-1 do
            comb[i] := i;
    
        // Print the first combination
        printc(comb, k);
    
        // Generate and print all the other combinations
        while next_comb(comb, k, n) do
            printc(comb, k);
    end;
    
    begin
      Main;
      Readln;
    end.
    

    Output

    {1,2}
    {1,3}
    {1,4}
    {2,3}
    {2,4}
    {3,4}
    
    0 讨论(0)
提交回复
热议问题