I am trying to merge (join) multiple data tables (obtained with fread from 5 csv files) to form a single data table. I get an error when I try to merge 5 data tables, but wo
Using reshaping gives you a lot more flexibility in how you want to name your columns.
library(dplyr)
library(tidyr)
list(DT1, DT2, DT3, DT4, DT5) %>%
bind_rows(.id = "source") %>%
mutate(source = paste("y", source, sep = ".")) %>%
spread(source, y)
Or, this would work
library(dplyr)
library(tidyr)
list(DT1 = DT1, DT2 = DT2, DT3 = DT3, DT4 = DT4, DT5 = DT5) %>%
bind_rows(.id = "source") %>%
mutate(source = paste(source, "y", sep = ".")) %>%
spread(source, y)
Alternatively you could setNames
for the columns before and do merge
like this
dts = list(DT1, DT2, DT3, DT4, DT5)
names(dts) = paste('DT', c(1:5), sep = '')
dtlist = lapply(names(dts),function(i)
setNames(dts[[i]], c('x', paste('y',i,sep = '.'))))
Reduce(function(...) merge(..., all = T), dtlist)
# x y.DT1 y.DT2 y.DT3 y.DT4 y.DT5
#1: a 10 11 12 13 14
#2: b 11 12 13 14 15
#3: c 12 13 14 15 16
#4: d 13 14 15 16 17
#5: e 14 15 16 17 18
#6: f 15 16 17 18 19
Here's a way of keeping a counter within Reduce
, if you want to rename during the merge:
Reduce((function() {counter = 0
function(x, y) {
counter <<- counter + 1
d = merge(x, y, all = T, by = 'x')
setnames(d, c(head(names(d), -1), paste0('y.', counter)))
}})(), list(DT1, DT2, DT3, DT4, DT5))
# x y.x y.1 y.2 y.3 y.4
#1: a 10 11 12 13 14
#2: b 11 12 13 14 15
#3: c 12 13 14 15 16
#4: d 13 14 15 16 17
#5: e 14 15 16 17 18
#6: f 15 16 17 18 19
If it's just those 5 datatables (where x
is the same for all datatables), you could also use nested joins:
# set the key for each datatable to 'x'
setkey(DT1,x)
setkey(DT2,x)
setkey(DT3,x)
setkey(DT4,x)
setkey(DT5,x)
# the nested join
mergedDT1 <- DT1[DT2[DT3[DT4[DT5]]]]
Or as @Frank said in the comments:
DTlist <- list(DT1,DT2,DT3,DT4,DT5)
Reduce(function(X,Y) X[Y], DTlist)
which gives:
x y1 y2 y3 y4 y5
1: a 10 11 12 13 14
2: b 11 12 13 14 15
3: c 12 13 14 15 16
4: d 13 14 15 16 17
5: e 14 15 16 17 18
6: f 15 16 17 18 19
This gives the same result as:
mergedDT2 <- Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5))
> identical(mergedDT1,mergedDT2)
[1] TRUE
When your x
columns do not have the same values, a nested join will not give the desired solution:
DT1[DT2[DT3[DT4[DT5[DT6]]]]]
this gives:
x y1 y2 y3 y4 y5 y6
1: b 11 12 13 14 15 15
2: c 12 13 14 15 16 16
3: d 13 14 15 16 17 17
4: e 14 15 16 17 18 18
5: f 15 16 17 18 19 19
6: g NA NA NA NA NA 20
While:
Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5, DT6))
gives:
x y1 y2 y3 y4 y5 y6
1: a 10 11 12 13 14 NA
2: b 11 12 13 14 15 15
3: c 12 13 14 15 16 16
4: d 13 14 15 16 17 17
5: e 14 15 16 17 18 18
6: f 15 16 17 18 19 19
7: g NA NA NA NA NA 20
Used data:
In order to make the code with Reduce
work, I changed the names of the y
columns.
DT1 <- data.table(x = letters[1:6], y1 = 10:15)
DT2 <- data.table(x = letters[1:6], y2 = 11:16)
DT3 <- data.table(x = letters[1:6], y3 = 12:17)
DT4 <- data.table(x = letters[1:6], y4 = 13:18)
DT5 <- data.table(x = letters[1:6], y5 = 14:19)
DT6 <- data.table(x = letters[2:7], y6 = 15:20, key="x")
stack and reshape I don't think this maps exactly to the merge
function but...
mycols <- "x"
DTlist <- list(DT1,DT2,DT3,DT4,DT5)
dcast(rbindlist(DTlist,idcol=TRUE), paste0(paste0(mycols,collapse="+"),"~.id"))
# x 1 2 3 4 5
# 1: a 10 11 12 13 14
# 2: b 11 12 13 14 15
# 3: c 12 13 14 15 16
# 4: d 13 14 15 16 17
# 5: e 14 15 16 17 18
# 6: f 15 16 17 18 19
I have no sense for if this would extend to having more columns than y
.
merge-assign
DT <- Reduce(function(...) merge(..., all = TRUE, by = mycols),
lapply(DTlist,`[.noquote`,mycols))
for (k in seq_along(DTlist)){
js = setdiff( names(DTlist[[k]]), mycols )
DT[DTlist[[k]], paste0(js,".",k) := mget(paste0("i.",js)), on=mycols, by=.EACHI]
}
# x y.1 y.2 y.3 y.4 y.5
# 1: a 10 11 12 13 14
# 2: b 11 12 13 14 15
# 3: c 12 13 14 15 16
# 4: d 13 14 15 16 17
# 5: e 14 15 16 17 18
# 6: f 15 16 17 18 19
(I'm not sure if this fully extends to other cases. Hard to say because the OP's example really doesn't demand the full functionality of merge
. In the OP's case, with mycols="x"
and x
being the same across all DT*
, obviously a merge is inappropriate, as mentioned by @eddi. The general problem is interesting, though, so that's what I'm trying to attack here.)
Another way of doing this:
dts <- list(DT1, DT2, DT3, DT4, DT5)
names(dts) <- paste("y", seq_along(dts), sep="")
data.table::dcast(rbindlist(dts, idcol="id"), x ~ id, value.var = "y")
# x y1 y2 y3 y4 y5
#1: a 10 11 12 13 14
#2: b 11 12 13 14 15
#3: c 12 13 14 15 16
#4: d 13 14 15 16 17
#5: e 14 15 16 17 18
#6: f 15 16 17 18 19
The package name in "data.table::dcast" is added to ensure that the call returns a data table and not a data frame even if the "reshape2" package is loaded as well. Without mentioning the package name explicitly, the dcast function from the reshape2 package might be used which works on a data.frame and returns a data.frame instead of a data.table.