Please see my plot below:
my code:
> head(data)
You can achieve this by defining the order of Timepoints in a dendrogram after you have applied hclust
to your data:
data <- scale(t(data))
ord <- hclust( dist(data, method = "euclidean"), method = "ward.D" )$order
ord
[1] 2 3 1 4 8 5 6 10 7 9
The only thing you have to do then is transforming your Time-column to a factor
where the factor levels are ordered by ord
:
pd <- as.data.frame( data )
pd$Time <- sub("_.*", "", rownames(pd))
pd.m <- melt( pd, id.vars = "Time", variable.name = "Gene" )
pd.m$Gene <- factor( pd.m$Gene, levels = colnames(data), labels = seq_along( colnames(data) ) )
pd.m$Time <- factor( pd.m$Time, levels = rownames(data)[ord], labels = c("0h", "0.25h", "0.5h","1h","2h","3h","6h","12h","24h","48h") )
The rest is done by ggplot
automatically:
ggplot( pd.m, aes(Time, Gene) ) +
geom_tile(aes(fill = value)) +
scale_fill_gradient2(low=muted("blue"), high=muted("red"))
Thought I'd add you don't need to transform the columns in the data.frame
to factors, you can use ggplot
's scale_*_discrete
function to set the plotting order of axes. Simply set the plotting order using the limits
argument and the labels using the labels
argument as shown below.
data<-read.table(text="X0 X1 X2 X3 X4 X5 X6 X7 X8 X9
NM_001001144 6.52334 9.75243 5.62914 6.833650 6.789850 7.421440 8.675330 12.117600 11.551500 7.676900
NM_001001327 1.89826 3.74708 1.48213 0.590923 2.915120 4.052600 0.758997 3.653680 1.931400 2.487570
NM_001002267 1.70346 2.72858 2.10879 1.898050 3.063480 4.435810 7.499640 5.038870 11.128700 22.016500
NM_001003717 6.02279 7.46547 7.39593 7.344080 4.568470 3.347250 2.230450 3.598560 2.470390 4.184450
NM_001003920 1.06842 1.11961 1.38981 1.054000 0.833823 0.866511 0.795384 0.980946 0.731532 0.949049
NM_001003953 7.50832 7.13316 4.10741 5.327390 2.311230 1.023050 2.573220 1.883740 3.215150 2.483410", header = TRUE, stringsAsFactors = FALSE)
data <- scale(t(data))
ord <- hclust( dist(data, method = "euclidean"), method = "ward.D" )$order
pd <- as.data.frame( data )
pd$Time <- sub("_.*", "", rownames(pd))
pd.m <- melt( pd, id.vars = "Time", variable.name = "Gene" )
ggplot( pd.m, aes(Time, Gene) ) +
geom_tile(aes(fill = value)) +
scale_x_discrete(limits=pd.m$Time[ord], labels = c("0h", "0.25h", "0.5h","1h","2h","3h","6h","12h","24h","48h"))+
scale_y_discrete(limits=colnames(data), labels = seq_along(colnames(data)))+
scale_fill_gradient2(low=muted("blue"), high=muted("red"))
I don't think ggplot
supports this out of the box, but you can use heatmap
:
heatmap(
as.matrix(dat), Rowv=NA,
Colv=as.dendrogram(hclust(dist(t(as.matrix(dat)))))
)
Note this won't look like yours because I'm just using the head
of your data, not the whole thing.
Here we specify the clustering manually with a dendogram derived from your hclust
with the Colv
argument. You can specify the clustering manually too through the Colv
argument if the one used by default doesn't line up with what you want.