I\'m coming to Python from R and trying to reproduce a number of things that I\'m used to doing in R using Python. The Matrix library for R has a very nifty function called
I would submit a non-iterative approach. This is slightly modified from Rebonato and Jackel (1999) (page 7-9). Iterative approaches can take a long time to process on matrices of more than a few hundred variables.
import numpy as np
def nearPSD(A,epsilon=0):
n = A.shape[0]
eigval, eigvec = np.linalg.eig(A)
val = np.matrix(np.maximum(eigval,epsilon))
vec = np.matrix(eigvec)
T = 1/(np.multiply(vec,vec) * val.T)
T = np.matrix(np.sqrt(np.diag(np.array(T).reshape((n)) )))
B = T * vec * np.diag(np.array(np.sqrt(val)).reshape((n)))
out = B*B.T
return(out)
Code is modified from a discussion of this topic here around nonPD/PSD matrices in R.
This is perhaps a silly extension to DomPazz answer to consider both correlation and covariance matrices. It also has an early termination if you are dealing with a large number of matrices.
def near_psd(x, epsilon=0):
'''
Calculates the nearest postive semi-definite matrix for a correlation/covariance matrix
Parameters
----------
x : array_like
Covariance/correlation matrix
epsilon : float
Eigenvalue limit (usually set to zero to ensure positive definiteness)
Returns
-------
near_cov : array_like
closest positive definite covariance/correlation matrix
Notes
-----
Document source
http://www.quarchome.org/correlationmatrix.pdf
'''
if min(np.linalg.eigvals(x)) > epsilon:
return x
# Removing scaling factor of covariance matrix
n = x.shape[0]
var_list = np.array([np.sqrt(x[i,i]) for i in xrange(n)])
y = np.array([[x[i, j]/(var_list[i]*var_list[j]) for i in xrange(n)] for j in xrange(n)])
# getting the nearest correlation matrix
eigval, eigvec = np.linalg.eig(y)
val = np.matrix(np.maximum(eigval, epsilon))
vec = np.matrix(eigvec)
T = 1/(np.multiply(vec, vec) * val.T)
T = np.matrix(np.sqrt(np.diag(np.array(T).reshape((n)) )))
B = T * vec * np.diag(np.array(np.sqrt(val)).reshape((n)))
near_corr = B*B.T
# returning the scaling factors
near_cov = np.array([[near_corr[i, j]*(var_list[i]*var_list[j]) for i in xrange(n)] for j in xrange(n)])
return near_cov
I know this thread is old, but the solutions provided here were not satisfactory for my covariance matrices: the transformed matrices always looked quite different from the original ones (for the cases I tested at least). So, I'm leaving here a very straightforward answer, based on the solution provided in this answer:
import numpy as np
def get_near_psd(A):
C = (A + A.T)/2
eigval, eigvec = np.linalg.eig(C)
eigval[eigval < 0] = 0
return eigvec.dot(np.diag(eigval)).dot(eigvec.T)
The idea is simple: I compute the symmetric matrix, then do an eigen decomposition to get the eigenvalues and eigenvectors. I zero out all negative eigenvalues and construct back the matrix, which will now be positive semi-definite.
For the sake of completness, I leave a simple code to check whether a matrix is positive semi-definite using numpy (basically checking whether all eigenvalues are non-negative):
def is_pos_semidef(x):
return np.all(np.linalg.eigvals(x) >= 0)
I don't think there is a library which returns the matrix you want, but here is a "just for fun" coding of neareast positive semi-definite matrix algorithm from Higham (2000)
import numpy as np,numpy.linalg
def _getAplus(A):
eigval, eigvec = np.linalg.eig(A)
Q = np.matrix(eigvec)
xdiag = np.matrix(np.diag(np.maximum(eigval, 0)))
return Q*xdiag*Q.T
def _getPs(A, W=None):
W05 = np.matrix(W**.5)
return W05.I * _getAplus(W05 * A * W05) * W05.I
def _getPu(A, W=None):
Aret = np.array(A.copy())
Aret[W > 0] = np.array(W)[W > 0]
return np.matrix(Aret)
def nearPD(A, nit=10):
n = A.shape[0]
W = np.identity(n)
# W is the matrix used for the norm (assumed to be Identity matrix here)
# the algorithm should work for any diagonal W
deltaS = 0
Yk = A.copy()
for k in range(nit):
Rk = Yk - deltaS
Xk = _getPs(Rk, W=W)
deltaS = Xk - Rk
Yk = _getPu(Xk, W=W)
return Yk
When tested on the example from the paper, it returns the correct answer
print nearPD(np.matrix([[2,-1,0,0],[-1,2,-1,0],[0,-1,2,-1],[0,0,-1,2]]),nit=10)
[[ 1. -0.80842467 0.19157533 0.10677227]
[-0.80842467 1. -0.65626745 0.19157533]
[ 0.19157533 -0.65626745 1. -0.80842467]
[ 0.10677227 0.19157533 -0.80842467 1. ]]