How can I shuffle bits efficiently?

前端 未结 7 1179
闹比i
闹比i 2020-12-29 06:15

I need to shuffle a 16 bit unsigned integer in a way that the even indexes land in the lower byte, and the odd indexes land in the upper byte.

input:
fedcba9         


        
相关标签:
7条回答
  • 2020-12-29 06:40

    your answer to the even and odd bits shuffle for 64 bits is not accurate. To extend the 16 bit solution to 64 bit solution, we need not only to extend the masks, but also cover the swapping interval from 1 all the way to 16:

    x = bit_permute_step(x, 0x2222222222222222, 1);
    x = bit_permute_step(x, 0x0c0c0c0c0c0c0c0c, 2);
    x = bit_permute_step(x, 0x00f000f000f000f0, 4);
    **x = bit_permute_step(x, 0x0000ff000000ff00, 8);
    x = bit_permute_step(x, 0x00000000ffff0000, 16);**
    
    0 讨论(0)
  • 2020-12-29 06:40

    In favour of being short:

    unsigned short segregate(unsigned short x)
    {
        x = (x & 0x9999) | (x >> 1 & 0x2222) | (x << 1 & 0x4444);
        x = (x & 0xC3C3) | (x >> 2 & 0x0C0C) | (x << 2 & 0x3030);
        x = (x & 0xF00F) | (x >> 4 & 0x00F0) | (x << 4 & 0x0F00);
        return x;
    }
    
    0 讨论(0)
  • 2020-12-29 06:50

    You could use a 256-byte table for each byte of your 16-bit number, crafted so that your even/odd condition is satisfied.

    Ah yes, lookup tables to the rescue :) You can even do it with a single table and one extra shift:

    u16 every_other[256] = {
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x02, 0x03, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x04, 0x05, 0x04, 0x05, 0x06, 0x07, 0x06, 0x07, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x08, 0x09, 0x08, 0x09, 0x0a, 0x0b, 0x0a, 0x0b, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f, 
    0x0c, 0x0d, 0x0c, 0x0d, 0x0e, 0x0f, 0x0e, 0x0f};
    
    u16 segregate(u16 x)
    {
        return every_other[x & 0xff]
             | every_other[(x >> 8)] << 4
             | every_other[(x >> 1) & 0xff] << 8
             | every_other[(x >> 9)] << 12;
    }
    
    0 讨论(0)
  • 2020-12-29 06:51

    You could use a 256-byte table for each byte of your 16-bit number, crafted so that your even/odd condition is satisfied. Hand-code the table entries (or use the algorithm you already have) to create the tables, and then the shuffling will be done at compile time. That would essentially be a translation table concept.

    0 讨论(0)
  • 2020-12-29 06:53

    Tables. But generate them at compile time!

    namespace details {
      constexpr uint8_t bit( unsigned byte, unsigned n ) {
        return (byte>>n)&1;
      }
      constexpr uint8_t even_bits(uint8_t byte) {
        return bit(byte, 0) | (bit(byte, 2)<<1) | (bit(byte, 4)<<2) | (bit(byte, 6)<<3);
      }
      constexpr uint8_t odd_bits(uint8_t byte) {
        return even_bits(byte/2);
      }
      template<unsigned...>struct indexes{using type=indexes;};
      template<unsigned Max,unsigned...Is>struct make_indexes:make_indexes<Max-1,Max-1,Is...>{};
      template<unsigned...Is>struct make_indexes<0,Is...>:indexes<Is...>{};
      template<unsigned Max>using make_indexes_t=typename make_indexes<Max>::type;
    
      template<unsigned...Is>
      constexpr std::array< uint8_t, 256 > even_bit_table( indexes<Is...> ) {
        return { even_bits(Is)... };
      }
      template<unsigned...Is>
      constexpr std::array< uint8_t, 256 > odd_bit_table( indexes<Is...> ) {
        return { odd_bits(Is)... };
      }
      constexpr std::array< uint8_t, 256 > even_bit_table() {
        return even_bit_table( make_indexes_t<256>{} );
      }
      constexpr std::array< uint8_t, 256 > odd_bit_table() {
        return odd_bit_table( make_indexes_t<256>{} );
      }
    
      static constexpr auto etable = even_bit_table();
      static constexpr auto otable = odd_bit_table();
    }
    
    uint8_t constexpr even_bits( uint16_t in ) {
      return details::etable[(uint8_t)in] | ((details::etable[(uint8_t)(in>>8)])<<4);
    }
    uint8_t constexpr odd_bits( uint16_t in ) {
      return details::otable[(uint8_t)in] | ((details::otable[(uint8_t)(in>>8)])<<4);
    }
    

    live example

    0 讨论(0)
  • 2020-12-29 06:54

    There is a very convenient web resource that helps solving many bit permutation problems: Code generator for bit permutations. In this particular case feeding "0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15" to this page produces pretty fast code.

    Unfortunately this code generator cannot produce 64-bit code (though anyone could download sources and add this option). So if we need to perform 4 permutations in parallel using 64-bit instructions, we have to extend all involved bitmasks to 64 bits manually:

    uint64_t bit_permute_step(uint64_t x, uint64_t m, unsigned shift) {
      uint64_t t;
      t = ((x >> shift) ^ x) & m;
      x = (x ^ t) ^ (t << shift);
      return x;
    }
    
    uint64_t segregate4(uint64_t x)
    { // generated by http://programming.sirrida.de/calcperm.php, extended to 64-bit
      x = bit_permute_step(x, 0x2222222222222222ull, 1);
      x = bit_permute_step(x, 0x0c0c0c0c0c0c0c0cull, 2);
      x = bit_permute_step(x, 0x00f000f000f000f0ull, 4);
      return x;
    }
    

    Level of parallelism could be increased even more (8 or 16 permutations at once) with SSE instructions. (And recent versions of gcc can vectorize this code automatically).

    If parallelism is not required and data cache is not extensively used by other parts of the program, better alternative would be to use lookup table. Various LUT approacehes are already discussed in other answers, still some more could be said here:

    1. The first and the last bits of 16-bit word are never permuted, we need to shuffle only bits 1..14. So (if we want to perform the task with single LUT access) it is enough to have a LUT with 16K entries which means 32K of memory.
    2. We could combine table lookup and computation approaches. Two lookups in a single 256-byte table could shuffle each source byte separately. After this we only need to exchange two middle 4-bit nibbles. This allows to keep lookup table small, uses only 2 memory accesses, and needs not too much calculations (i.e. balances calculations and memory accesses).

    Here is implementation of second approach:

    #define B10(x)          x+0x00,      x+0x10,      x+0x01,      x+0x11
    #define B32(x)      B10(x+0x00), B10(x+0x20), B10(x+0x02), B10(x+0x22)
    #define B54(x)      B32(x+0x00), B32(x+0x40), B32(x+0x04), B32(x+0x44)
    uint8_t lut[256] = {B54(  0x00), B54(  0x80), B54(  0x08), B54(  0x88)};
    #undef B54
    #undef B32
    #undef B10
    
    uint_fast16_t segregateLUT(uint_fast16_t x)
    {
      uint_fast16_t low = lut[x & 0x00ff];
      low |= low << 4;
      uint_fast16_t high = lut[x >> 8] << 4;
      high |= high << 4;
      return (low & 0x0f0f) | (high & 0xf0f0);
    }
    

    But fastest approach (if portability is not an issue) is using pext instruction from BMI2 instruction set as noted by Nils Pipenbrinck. With a pair of 64-bit pext we could perform 4 16-bit shuffles in parallel. Since pext instruction is intended exactly for this kind of bit permutations, this approach easily outperforms all others.

    0 讨论(0)
提交回复
热议问题