I have a class Point
, consisting of a point with x and y coordinates, and I have to write a method that computes and returns the equation of a straight line joi
I cleaned it up a bit; see what you think.
def slope(dx, dy):
return (dy / dx) if dx else None
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return '({}, {})'.format(self.x, self.y)
def __repr__(self):
return 'Point({}, {})'.format(self.x, self.y)
def halfway(self, target):
midx = (self.x + target.x) / 2
midy = (self.y + target.y) / 2
return Point(midx, midy)
def distance(self, target):
dx = target.x - self.x
dy = target.y - self.y
return (dx*dx + dy*dy) ** 0.5
def reflect_x(self):
return Point(-self.x,self.y)
def reflect_y(self):
return Point(self.x,-self.y)
def reflect_x_y(self):
return Point(-self.x, -self.y)
def slope_from_origin(self):
return slope(self.x, self.y)
def slope(self, target):
return slope(target.x - self.x, target.y - self.y)
def y_int(self, target): # <= here's the magic
return self.y - self.slope(target)*self.x
def line_equation(self, target):
slope = self.slope(target)
y_int = self.y_int(target)
if y_int < 0:
y_int = -y_int
sign = '-'
else:
sign = '+'
return 'y = {}x {} {}'.format(slope, sign, y_int)
def line_function(self, target):
slope = self.slope(target)
y_int = self.y_int(target)
def fn(x):
return slope*x + y_int
return fn
and here are some use examples:
a = Point(2., 2.)
b = Point(4., 3.)
print(a) # => (2.0, 2.0)
print(repr(b)) # => Point(4.0, 3.0)
print(a.halfway(b)) # => (3.0, 2.5)
print(a.slope(b)) # => 0.5
print(a.y_int(b)) # => 1.0
print(a.line_equation(b)) # => y = 0.5x + 1.0
line = a.line_function(b)
print(line(x=6.)) # => 4.0
class Line(object):
def __init__(self,coor1,coor2):
self.coor1 = coor1
self.coor2 = coor2
def distance(self):
x1,y1 = self.coor1
x2,y2 = self.coor2
return ((x2-x1)**2+(y2-y1)**2)**0.5
def slope(self):
x1,x2 = self.coor1
y1,y2 = self.coor2
return (float(y2-y1))/(x2-x1)
Let's assume that we have the following points:
P0: ( x0 = 100, y0 = 240 )
P1: ( x1 = 400, y1 = 265 )
We can compute the coefficients of the line y = a*x + b that connects the two points using the polyfit method from numpy.
import numpy as np
import matplotlib.pyplot as plt
# Define the known points
x = [100, 400]
y = [240, 265]
# Calculate the coefficients. This line answers the initial question.
coefficients = np.polyfit(x, y, 1)
# Print the findings
print 'a =', coefficients[0]
print 'b =', coefficients[1]
# Let's compute the values of the line...
polynomial = np.poly1d(coefficients)
x_axis = np.linspace(0,500,100)
y_axis = polynomial(x_axis)
# ...and plot the points and the line
plt.plot(x_axis, y_axis)
plt.plot( x[0], y[0], 'go' )
plt.plot( x[1], y[1], 'go' )
plt.grid('on')
plt.show()
a = 0.0833333333333
b = 231.666666667
For installing numpy: http://docs.scipy.org/doc/numpy/user/install.html
from numpy import ones,vstack
from numpy.linalg import lstsq
points = [(1,5),(3,4)]
x_coords, y_coords = zip(*points)
A = vstack([x_coords,ones(len(x_coords))]).T
m, c = lstsq(A, y_coords)[0]
print("Line Solution is y = {m}x + {c}".format(m=m,c=c))
but really your method should be fine ...
I think you are making pretty advanced code, but you are making it complicated. Here is a function that can do that:
from decimal import Decimal
def lin_equ(l1, l2):
"""Line encoded as l=(x,y)."""
m = Decimal((l2[1] - l1[1])) / Decimal(l2[0] - l1[0])
c = (l2[1] - (m * l2[0]))
return m, c
# Example Usage:
lin_equ((-40, 30,), (20, 45))
# Result: (Decimal('0.25'), Decimal('40.00'))