I\'m under the impression that these two commands result in the same end, namely incrementing X by 1 but that the latter is probably more efficient.
If this is not c
i thought the differences are due to the additional clock cycles used for memory references, but i turned out to be wrong! can't understand this thing myself
instruction type example cycles
===================================================================
ADD reg,reg add ax,bx 1
ADD mem,reg add total, cx 3
ADD reg,mem add cx,incr 2
ADD reg,immed add bx,6 1
ADD mem,immed add pointers[bx][si],6 3
ADD accum,immed add ax,10 1
INC reg inc bx 1
INC mem inc vpage 3
MOV reg,reg mov bp,sp 1
MOV mem,reg mov array[di],bx 1
MOV reg,mem mov bx,pointer 1
MOV mem,immed mov [bx],15 1
MOV reg,immed mov cx,256 1
MOV mem,accum mov total,ax 1
MOV accum,mem mov al,string 1
MOV segreg,reg16 mov ds,ax 2, 3
MOV segreg,mem16 mov es,psp 2, 3
MOV reg16,segreg mov ax,ds 1
MOV mem16,segreg mov stack_save,ss 1
MOV reg32,controlreg mov eax,cr0 22
mov eax,cr2 12
mov eax,cr3 21, 46
mov eax,cr4 14
MOV controlreg,reg32 mov cr0,eax 4
MOV reg32,debugreg mov edx,dr0 DR0-DR3,DR6,DR7=11;
DR4,DR5=12
MOV debugreg,reg32 mov dr0,ecx DR0-DR3,DR6,DR7=11;
DR4,DR5=12
source:http://turkish_rational.tripod.com/trdos/pentium.txt
the instructions may be tranlated as:
;for i = i+1 ; cycles
mov ax, [i] ; 1
add ax, 1 ; 1
mov [i], ax ; 1
;for i += 1
; dunno the syntax of instruction. it should be the pointers one :S
;for i++
inc i ; 3
;or
mov ax, [i] ; 1
inc ax ; 1
mov [i], ax ; 1
;for ++i
mov ax, [i] ; 1
;do stuff ; matters not
inc ax ; 1
mov [i], ax ; 1
all turn out to be same :S its just some data that may be helpful. please comment!
There is no difference in programmatic efficiency; just typing efficiency.
At run time (at least with PERL) there is no difference. x+=1 is roughly .5 seconds faster to type than x = x+1 though
In C++ it depends what datatype is x and how are operators defined. If x is an instance of some class you can get completely different results.
Or maybe you should fix the question and specify that x is an integer or whatever.
So many speculations! Even the conclusion with the Reflector thingy is not necessarily true because it can do optimizations while dissassembling.
So why does none of you guys just have a look into the IL code? Have a look at the following C# programme:
static void Main(string[] args)
{
int x = 2;
int y = 3;
x += 1;
y = y + 1;
Console.WriteLine(x);
Console.WriteLine(y);
}
This code snippet compiles to:
.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
// Code size 25 (0x19)
.maxstack 2
.locals init ([0] int32 x,
[1] int32 y)
// some commands omitted here
IL_0004: ldloc.0
IL_0005: ldc.i4.1
IL_0006: add
IL_0007: stloc.0
IL_0008: ldloc.1
IL_0009: ldc.i4.1
IL_000a: add
IL_000b: stloc.1
// some commands omitted here
}
As you can see, it's in fact absolutely the same. And why is it? Because IL's purpose is to tell what to do, not how to. The optimization will be a job of the JIT compiler. Btw it's the same in VB.Net
From the MSDN library for +=:
Using this operator is almost the same as specifying result = result + expression, except that result is only evaluated once.
So they are not identical and that is why x += 1 will be more efficient.
Update: I just noticed that my MSDN Library link was to the JScript page instead of the VB page, which does not contain the same quote.
Therefore upon further research and testing, that answer does not apply to VB.NET. I was wrong. Here is a sample console app:
Module Module1
Sub Main()
Dim x = 0
Console.WriteLine(PlusEqual1(x))
Console.WriteLine(Add1(x))
Console.WriteLine(PlusEqual2(x))
Console.WriteLine(Add2(x))
Console.ReadLine()
End Sub
Public Function PlusEqual1(ByVal x As Integer) As Integer
x += 1
Return x
End Function
Public Function Add1(ByVal x As Integer) As Integer
x = x + 1
Return x
End Function
Public Function PlusEqual2(ByVal x As Integer) As Integer
x += 2
Return x
End Function
Public Function Add2(ByVal x As Integer) As Integer
x = x + 2
Return x
End Function
End Module
IL for both PlusEqual1 and Add1 are indeed identical:
.method public static int32 Add1(int32 x) cil managed
{
.maxstack 2
.locals init (
[0] int32 Add1)
L_0000: nop
L_0001: ldarg.0
L_0002: ldc.i4.1
L_0003: add.ovf
L_0004: starg.s x
L_0006: ldarg.0
L_0007: stloc.0
L_0008: br.s L_000a
L_000a: ldloc.0
L_000b: ret
}
The IL for PlusEqual2 and Add2 are nearly identical to that as well:
.method public static int32 Add2(int32 x) cil managed
{
.maxstack 2
.locals init (
[0] int32 Add2)
L_0000: nop
L_0001: ldarg.0
L_0002: ldc.i4.2
L_0003: add.ovf
L_0004: starg.s x
L_0006: ldarg.0
L_0007: stloc.0
L_0008: br.s L_000a
L_000a: ldloc.0
L_000b: ret
}