This is an interview question. I have K machines each of which is connected to 1 central machine. Each of the K machines have an array of 4 byte numbers in file. You can use
1) sort the items on every machine 2) use a k - binary heap on the central machine a) populate the heap with first (max) element from each machine b) extract the first element, and put back in the heap the first element from the machine that you extracted the element. (of course heapify your heap, after the element is added).
Sort will be O(Nlog(N)) where N is the max array on the machines. O(k) - to build the heap O(klog(k)) to extract and populate the heap k times.
Complexity is max(O(klog(k)),O(Nlog(N)))
(This is an interesting problem because it involves parallelism. As I haven't encountered parallel algorithm optimization before, it's quite amusing: you can get away with some ridiculously high-complexity steps, because you can make up for it later. Anyway, onto the answer...)
> "What is the fastest I can do this?"
The best you can do is O(K). Below I illustrate both a simple O(K log(K)) algorithm, and the more complex O(K) algorithm.
First step:
Each computer needs enough time to read every element. This means that unless the elements are already in memory, one of the two bounds on the time is O(largest array size). If for example your largest array size varies as O(K log(K)) or O(K^2) or something, no amount of algorithmic trickery will let you go faster than that. Thus the actual best running time is O(max(K, largestArraySize))
technically.
Let us say the arrays have a max length of N, which is <=K. With the above caveat, we're allowed to bound N<K
since each computer has to look at each of its elements at least once (O(N) preprocessing per computer), each computer can pick the largest K elements (this is known as finding kth-order-statistics, see these linear-time algorithms). Furthermore, we can do so for free (since it's also O(N)).
Bounds and reasonable expectations:
Let's begin by thinking of some worst-case scenarios, and estimates for the minimum amount of work necessary.
Can this bound of O(N) be achieved? Let's see...
Simple approach - O(NlogN + K) = O(KlogK):
For now let's come up with a simple approach, which achieves O(NlogN + K).
Consider the data arranged like so, where each column is a computer, and each row is a number in the array:
computer: A B C D E F G
10 (o) (o)
9 o (o) (o)
8 o (o)
7 x x (x)
6 x x (x)
5 x ..........
4 x x ..
3 x x x . .
2 x x . .
1 x x .
0 x x .
You can also imagine this as a sweep-line algorithm from computation geometry, or an efficient variant of the 'merge' step from mergesort. The elements with parentheses represent the elements with which we'll initialize our potential "candidate solution" (in some central server). The algorithm will converge on the correct o
responses by dumping the (x)
answers for the two unselected o
s.
Algorithm:
(sidenote: Adding a callback hook to falling out of a priority queue is an O(1) operation.)
We can see graphically that this will perform at most 2K*(findNextHighest_time + queueInsert_time) operations, and as we do so, elements will naturally fall out of the priority queue. findNextHighest_time is O(1) since we sorted the arrays, so to minimize 2K*queueInsert_time, we choose a priority queue with an O(1) insertion time (e.g. a Fibonacci-heap based priority queue). This gives us an O(log(queue_size)) extraction time (we cannot have O(1) insertion and extraction); however, we never need to use the extract operation! Once we are done, we merely dump the priority queue as an unordered set, which takes O(queue_size)=O(K) time.
We'd thus have O(N log(N) + K) total running time (parallel sorting, followed by O(K)*O(1) priority queue insertions). In the worst case of N=K, this is O(K log(K)).
The better approach - O(N+K) = O(K):
However I have come up with a better approach, which achieves O(K). It is based on the median-of-median selection algorithm, but parallelized. It goes like this:
We can eliminate a set of numbers if we know for sure that there are at least K (not strictly) larger numbers somewhere among all the computers.
Algorithm:
sqrt(N)
th highest element of its set, and splits the set into elements < and > it. This takes O(N) time in parallel.K/sqrt(N)
th highest element of that set (let's call it the 'superstatistic'), and note which computers have statistics < and > the superstatistic. This takes O(K) time.It turns out that the reductions are O(N) total (amazingly not order K), except perhaps the final step which might by O(K). Thus this algorithm is O(N+K) = O(K) total.
Analysis and simulation of O(K) running time below. The statistics allow us to divide the world into four unordered sets, represented here as a rectangle divided into four subboxes:
------N-----
N^.5
________________
| | s | <- computer
| | #=K s REDIST. | <- computer
| | s | <- computer
| K/N^.5|-----S----------| <- computer
| | s | <- computer
K | s | <- computer
| | s ELIMIN. | <- computer
| | s | <- computer
| | s | <- computer
| |_____s__________| <- computer
LEGEND:
s=statistic, S=superstatistic
#=K -- set of K largest elements
(I'd draw the relation between the unordered sets of rows and s-column here, but it would clutter things up; see the addendum right now quickly.)
For this analysis, we will consider N as it decreases.
At a given step, we are able to eliminate the elements labelled ELIMIN
; this has removed area from the rectangle representation above, reducing the problem size from K*N to , which hilariously simplifies to
Now, the computers with the uneliminated elements redistribute their data (REDIST
rectangle above) to the computers with eliminated elements (ELIMIN
). This is done in parallel, where the bandwidth bottleneck corresponds to the length of the short size of REDIST
(because they are outnumbered by the ELIMIN
computers which are waiting for their data). Therefore the data will take as long to transfer as the long length of the REDIST
rectangle (another way of thinking about it: K/√N * (N-√N)
is the area, divided by K/√N
data-per-time, resulting in O(N-√N
) time).
Thus at each step of size N
, we are able to reduce the problem size to K(2√N-1)
, at the cost of performing N + 3K + (N-√N)
work. We now recurse. The recurrence relation which will tell us our performance is:
T(N) = 2N+3K-√N + T(2√N-1)
The decimation of the subproblem size is much faster than the normal geometric series (being √N rather than something like N/2 which you'd normally get from common divide-and-conquers). Unfortunately neither the Master Theorem nor the powerful Akra-Bazzi theorem work, but we can at least convince ourselves it is linear via a simulation:
>>> def T(n,k=None):
... return 1 if n<10 else sqrt(n)*(2*sqrt(n)-1)+3*k+T(2*sqrt(n)-1, k=k)
>>> f = (lambda x: x)
>>> (lambda n: T((10**5)*n,k=(10**5)*n)/f((10**5)*n) - T(n,k=n)/f(n))(10**30)
-3.552713678800501e-15
The function T(N)
is, at large scales, a multiple of the linear function x
, hence linear (doubling the input doubles the output). This method, therefore, almost certainly achieves the bound of O(N)
we conjecture. Though see the addendum for an interesting possibility.
...
Addendum
.
_
/ \
(.....) > s > (.....)
s
(.....) > s > (.....)
s
(.....) > s > (.....)
\_/
v
S
v
/ \
(.....) > s > (.....)
s
(.....) > s > (.....)
s
(.....) > s > (.....)
\_/
I would think the MapReduce paradigm would be well suited to a task like this.
Every machine runs it's own independent map task to find the maximum value in its array (depends on the language used) and this will probably be O(N) complexity for N numbers on each machine.
The reduce task compares the result from the individual machines' outputs to give you the largest k numbers.
Update: to make it clear, the combine step is not a sort. You just pick the top k numbers from the results. There are many ways to do this efficiently. You can use a heap for example, pushing the head of each list. Then you can remove the head from the heap and push the head from the list the element belonged to. Doing this k times gives you the result. All this is O(k*log(k)).