Counting collisions in a Python dictionary

前端 未结 3 1642
眼角桃花
眼角桃花 2020-12-28 19:09

my first time posting here, so hope I\'ve asked my question in the right sort of way,

After adding an element to a Python dictionary, is it possible to get Python to

相关标签:
3条回答
  • 2020-12-28 19:43

    Short answer:

    You can't simulate using object ids as dict keys by using random integers as dict keys. They have different hash functions.

    Collisions do happen. "Having unique thingies means no collisions" is wrong for several values of "thingy".

    You shouldn't be worrying about collisions.

    Long answer:

    Some explanations, derived from reading the source code:

    A dict is implemented as a table of 2 ** i entries, where i is an integer.

    dicts are no more than 2/3 full. Consequently for 15000 keys, i must be 15 and 2 ** i is 32768.

    When o is an arbitrary instance of a class that doesn't define __hash__(), it is NOT true that hash(o) == id(o). As the address is likely to have zeroes in the low-order 3 or 4 bits, the hash is constructed by rotating the address right by 4 bits; see the source file Objects/object.c, function _Py_HashPointer

    It would be a problem if there were lots of zeroes in the low-order bits, because to access a table of size 2 ** i (e.g. 32768), the hash value (often much larger than that) must be crunched to fit, and this is done very simply and quickly by taking the low order i (e.g. 15) bits of the hash value.

    Consequently collisions are inevitable.

    However this is not cause for panic. The remaining bits of the hash value are factored into the calculation of where the next probe will be. The likelihood of a 3rd etc probe being needed should be rather small, especially as the dict is never more than 2/3 full. The cost of multiple probes is mitigated by the cheap cost of calculating the slot for the first and subsequent probes.

    The code below is a simple experiment illustrating most of the above discussion. It presumes random accesses of the dict after it has reached its maximum size. With Python2.7.1, it shows about 2000 collisions for 15000 objects (13.3%).

    In any case the bottom line is that you should really divert your attention elsewhere. Collisions are not your problem unless you have achieved some extremely abnormal way of getting memory for your objects. You should look at how you are using the dicts e.g. use k in d or try/except, not d.has_key(k). Consider one dict accessed as d[(x, y)] instead of two levels accessed as d[x][y]. If you need help with that, ask a seperate question.

    Update after testing on Python 2.6:

    Rotating the address was not introduced until Python 2.7; see this bug report for comprehensive discussion and benchmarks. The basic conclusions are IMHO still valid, and can be augmented by "Update if you can".

    >>> n = 15000
    >>> i = 0
    >>> while 2 ** i / 1.5 < n:
    ...    i += 1
    ...
    >>> print i, 2 ** i, int(2 ** i / 1.5)
    15 32768 21845
    >>> probe_mask = 2 ** i - 1
    >>> print hex(probe_mask)
    0x7fff
    >>> class Foo(object):
    ...     pass
    ...
    >>> olist = [Foo() for j in xrange(n)]
    >>> hashes = [hash(o) for o in olist]
    >>> print len(set(hashes))
    15000
    >>> probes = [h & probe_mask for h in hashes]
    >>> print len(set(probes))
    12997
    >>>
    
    0 讨论(0)
  • 2020-12-28 19:54

    This idea doesn't actually work, see discussion in the question.

    A quick look at the C implementation of python shows that the code for resolving collisions does not calculate or store the number of collisions.

    However, it will invoke PyObject_RichCompareBool on the keys to check if they match. This means that __eq__ on the key will be invoked for every collision.

    So:

    Replace your keys with objects that define __eq__ and increment a counter when it is called. This will be slower because of the overhead involved in jumping into python for the compare. However, it should give you an idea of how many collisions are happening.

    Make sure you use different objects as the key, otherwise python will take a shortcut because an object is always equal to itself. Also, make sure the objects hash to the same value as the original keys.

    0 讨论(0)
  • 2020-12-28 20:02

    If your keys are guaranteed to be unique integers, and since Python uses hash() on the keys, then you should be guaranteed not to have any collisions.

    0 讨论(0)
提交回复
热议问题