In java we can write thead-safe singletons using double Checked Locking & volatile:
public class Singleton {
Kotlin has an equivalent of your Java code, but more safe. Your double lock check is not recommended even for Java. In Java you should use an inner class on the static which is also explained in Initialization-on-demand holder idiom.
But that's Java. In Kotlin, simply use an object (and optionally a lazy delegate):
object Singletons {
val something: OfMyType by lazy() { ... }
val somethingLazyButLessSo: OtherType = OtherType()
val moreLazies: FancyType by lazy() { ... }
}
You can then access any member variable:
// Singletons is lazy instantiated now, then something is lazy instantiated after.
val thing = Singletons.something // This is Doubly Lazy!
// this one is already loaded due to previous line
val eager = Singletons.somethingLazyButLessSo
// and Singletons.moreLazies isn't loaded yet until first access...
Kotlin intentionally avoids the confusion people have with singletons in Java. And avoids the "wrong versions" of this pattern -- of which there are many. It instead provides the simpler and the safest form of singletons.
Given the use of lazy()
, if you have other members each would individually be lazy. And since they are initialized in the lambda passed to lazy()
you can do things that you were asking about for about customizing the constructor, and for each member property.
As a result you have lazy loading of Singletons
object (on first access of instance), and then lazier loading of something
(on first access of member), and complete flexibility in object construction.
See also:
As a side note, look at object registry type libraries for Kotlin that are similar to dependency injection, giving you singletons with injection options:
I recently wrote an article on that topic. TL;DR Here's the solution I came up to:
1) Create a SingletonHolder
class. You only have to write it once:
open class SingletonHolder<out T, in A>(creator: (A) -> T) {
private var creator: ((A) -> T)? = creator
@Volatile private var instance: T? = null
fun getInstance(arg: A): T {
val i = instance
if (i != null) {
return i
}
return synchronized(this) {
val i2 = instance
if (i2 != null) {
i2
} else {
val created = creator!!(arg)
instance = created
creator = null
created
}
}
}
}
2) Use it like this in your singletons:
class MySingleton private constructor(arg: ArgumentType) {
init {
// Init using argument
}
companion object : SingletonHolder<MySingleton, ArgumentType>(::MySingleton)
}
The singleton initialization will be lazy and thread-safe.
Object declaration is exactly for this purpose:
object Singleton {
//singleton members
}
It is lazy and thread-safe, it initializes upon first call, much as Java's static initializers.
You can declare an object
at top level or inside a class or another object.
For more info about working with object
s from Java, please refer to this answer.
getInstance
takes its argument to initialize the singleton, following calls just return the instance, dropping the arguments), I would suggest this construct:
private object SingletonInit { //invisible outside the file
lateinit var arg0: String
}
object Singleton {
val arg0: String = SingletonInit.arg0
}
fun Singleton(arg0: String): Singleton { //mimic a constructor, if you want
synchronized(SingletonInit) {
SingletonInit.arg0 = arg0
return Singleton
}
}
The main flaw of this solution is that it requires the singleton to be defined in a separate file to hide the object SingletonInit
, and you cannot reference Singleton
directly until it's initialized.
Also, see a similar question about providing arguments to a singleton.