Suppose that df
is a dataframe in Spark. The way to write df
into a single CSV file is
df.coalesce(1).write.option(\"header\", \"tru
df.write.mode("overwrite").format("com.databricks.spark.csv").option("header", "true").csv("PATH/FOLDER_NAME/x.csv")
you can use this and if you don't want to give the name of CSV everytime you can write UDF or create an array of the CSV file name and give it to this it will work
For pyspark, you can convert to pandas dataframe and then save it.
df.toPandas().to_csv("<path>/<filename.csv>", header=True, index=False)
If you want to use only the python standard library this is an easy function that will write to a single file. You don't have to mess with tempfiles or going through another dir.
import csv
def spark_to_csv(df, file_path):
""" Converts spark dataframe to CSV file """
with open(file_path, "w") as f:
writer = csv.DictWriter(f, fieldnames=df.columns)
writer.writerow(dict(zip(fieldnames, fieldnames)))
for row in df.toLocalIterator():
writer.writerow(row.asDict())