Consider a small MWE, taken from another question:
DateTime Data
2017-11-21 18:54:31 1
2017-11-22 02:26:48 2
2017-11-22 10:19:44 3
Yes, it seems like np.clip
is a lot slower on pandas.Series
than on numpy.ndarray
s. That's correct but it's actually (at least asymptomatically) not that bad. 8000 elements is still in the regime where constant factors are major contributors in the runtime. I think this is a very important aspect to the question, so I'm visualizing this (borrowing from another answer):
# Setup
import pandas as pd
import numpy as np
def on_series(s):
return np.clip(s, a_min=None, a_max=1)
def on_values_of_series(s):
return np.clip(s.values, a_min=None, a_max=1)
# Timing setup
timings = {on_series: [], on_values_of_series: []}
sizes = [2**i for i in range(1, 26, 2)]
# Timing
for size in sizes:
func_input = pd.Series(np.random.randint(0, 30, size=size))
for func in timings:
res = %timeit -o func(func_input)
timings[func].append(res)
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
fig, (ax1, ax2) = plt.subplots(1, 2)
for func in timings:
ax1.plot(sizes,
[time.best for time in timings[func]],
label=str(func.__name__))
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.set_xlabel('size')
ax1.set_ylabel('time [seconds]')
ax1.grid(which='both')
ax1.legend()
baseline = on_values_of_series # choose one function as baseline
for func in timings:
ax2.plot(sizes,
[time.best / ref.best for time, ref in zip(timings[func], timings[baseline])],
label=str(func.__name__))
ax2.set_yscale('log')
ax2.set_xscale('log')
ax2.set_xlabel('size')
ax2.set_ylabel('time relative to {}'.format(baseline.__name__))
ax2.grid(which='both')
ax2.legend()
plt.tight_layout()
It's a log-log plot because I think this shows the important features more clearly. For example it shows that np.clip
on a numpy.ndarray
is faster but it also has a much smaller constant factor in that case. The difference for large arrays is only ~3! That's still a big difference but way less than the difference on small arrays.
However, that's still not an answer to the question where the time difference comes from.
The solution is actually quite simple: np.clip
delegates to the clip
method of the first argument:
>>> np.clip??
Source:
def clip(a, a_min, a_max, out=None):
"""
...
"""
return _wrapfunc(a, 'clip', a_min, a_max, out=out)
>>> np.core.fromnumeric._wrapfunc??
Source:
def _wrapfunc(obj, method, *args, **kwds):
try:
return getattr(obj, method)(*args, **kwds)
# ...
except (AttributeError, TypeError):
return _wrapit(obj, method, *args, **kwds)
The getattr
line of the _wrapfunc
function is the important line here, because np.ndarray.clip
and pd.Series.clip
are different methods, yes, completely different methods:
>>> np.ndarray.clip
<method 'clip' of 'numpy.ndarray' objects>
>>> pd.Series.clip
<function pandas.core.generic.NDFrame.clip>
Unfortunately is np.ndarray.clip
a C-function so it's hard to profile it, however pd.Series.clip
is a regular Python function so it's easy to profile. Let's use a Series of 5000 integers here:
s = pd.Series(np.random.randint(0, 100, 5000))
For the np.clip
on the values
I get the following line-profiling:
%load_ext line_profiler
%lprun -f np.clip -f np.core.fromnumeric._wrapfunc np.clip(s.values, a_min=None, a_max=1)
Timer unit: 4.10256e-07 s
Total time: 2.25641e-05 s
File: numpy\core\fromnumeric.py
Function: clip at line 1673
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1673 def clip(a, a_min, a_max, out=None):
1674 """
...
1726 """
1727 1 55 55.0 100.0 return _wrapfunc(a, 'clip', a_min, a_max, out=out)
Total time: 1.51795e-05 s
File: numpy\core\fromnumeric.py
Function: _wrapfunc at line 55
Line # Hits Time Per Hit % Time Line Contents
==============================================================
55 def _wrapfunc(obj, method, *args, **kwds):
56 1 2 2.0 5.4 try:
57 1 35 35.0 94.6 return getattr(obj, method)(*args, **kwds)
58
59 # An AttributeError occurs if the object does not have
60 # such a method in its class.
61
62 # A TypeError occurs if the object does have such a method
63 # in its class, but its signature is not identical to that
64 # of NumPy's. This situation has occurred in the case of
65 # a downstream library like 'pandas'.
66 except (AttributeError, TypeError):
67 return _wrapit(obj, method, *args, **kwds)
But for np.clip
on the Series
I get a totally different profiling result:
%lprun -f np.clip -f np.core.fromnumeric._wrapfunc -f pd.Series.clip -f pd.Series._clip_with_scalar np.clip(s, a_min=None, a_max=1)
Timer unit: 4.10256e-07 s
Total time: 0.000823794 s
File: numpy\core\fromnumeric.py
Function: clip at line 1673
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1673 def clip(a, a_min, a_max, out=None):
1674 """
...
1726 """
1727 1 2008 2008.0 100.0 return _wrapfunc(a, 'clip', a_min, a_max, out=out)
Total time: 0.00081846 s
File: numpy\core\fromnumeric.py
Function: _wrapfunc at line 55
Line # Hits Time Per Hit % Time Line Contents
==============================================================
55 def _wrapfunc(obj, method, *args, **kwds):
56 1 2 2.0 0.1 try:
57 1 1993 1993.0 99.9 return getattr(obj, method)(*args, **kwds)
58
59 # An AttributeError occurs if the object does not have
60 # such a method in its class.
61
62 # A TypeError occurs if the object does have such a method
63 # in its class, but its signature is not identical to that
64 # of NumPy's. This situation has occurred in the case of
65 # a downstream library like 'pandas'.
66 except (AttributeError, TypeError):
67 return _wrapit(obj, method, *args, **kwds)
Total time: 0.000804922 s
File: pandas\core\generic.py
Function: clip at line 4969
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4969 def clip(self, lower=None, upper=None, axis=None, inplace=False,
4970 *args, **kwargs):
4971 """
...
5021 """
5022 1 12 12.0 0.6 if isinstance(self, ABCPanel):
5023 raise NotImplementedError("clip is not supported yet for panels")
5024
5025 1 10 10.0 0.5 inplace = validate_bool_kwarg(inplace, 'inplace')
5026
5027 1 69 69.0 3.5 axis = nv.validate_clip_with_axis(axis, args, kwargs)
5028
5029 # GH 17276
5030 # numpy doesn't like NaN as a clip value
5031 # so ignore
5032 1 158 158.0 8.1 if np.any(pd.isnull(lower)):
5033 1 3 3.0 0.2 lower = None
5034 1 26 26.0 1.3 if np.any(pd.isnull(upper)):
5035 upper = None
5036
5037 # GH 2747 (arguments were reversed)
5038 1 1 1.0 0.1 if lower is not None and upper is not None:
5039 if is_scalar(lower) and is_scalar(upper):
5040 lower, upper = min(lower, upper), max(lower, upper)
5041
5042 # fast-path for scalars
5043 1 1 1.0 0.1 if ((lower is None or (is_scalar(lower) and is_number(lower))) and
5044 1 28 28.0 1.4 (upper is None or (is_scalar(upper) and is_number(upper)))):
5045 1 1654 1654.0 84.3 return self._clip_with_scalar(lower, upper, inplace=inplace)
5046
5047 result = self
5048 if lower is not None:
5049 result = result.clip_lower(lower, axis, inplace=inplace)
5050 if upper is not None:
5051 if inplace:
5052 result = self
5053 result = result.clip_upper(upper, axis, inplace=inplace)
5054
5055 return result
Total time: 0.000662153 s
File: pandas\core\generic.py
Function: _clip_with_scalar at line 4920
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4920 def _clip_with_scalar(self, lower, upper, inplace=False):
4921 1 2 2.0 0.1 if ((lower is not None and np.any(isna(lower))) or
4922 1 25 25.0 1.5 (upper is not None and np.any(isna(upper)))):
4923 raise ValueError("Cannot use an NA value as a clip threshold")
4924
4925 1 22 22.0 1.4 result = self.values
4926 1 571 571.0 35.4 mask = isna(result)
4927
4928 1 95 95.0 5.9 with np.errstate(all='ignore'):
4929 1 1 1.0 0.1 if upper is not None:
4930 1 141 141.0 8.7 result = np.where(result >= upper, upper, result)
4931 1 33 33.0 2.0 if lower is not None:
4932 result = np.where(result <= lower, lower, result)
4933 1 73 73.0 4.5 if np.any(mask):
4934 result[mask] = np.nan
4935
4936 1 90 90.0 5.6 axes_dict = self._construct_axes_dict()
4937 1 558 558.0 34.6 result = self._constructor(result, **axes_dict).__finalize__(self)
4938
4939 1 2 2.0 0.1 if inplace:
4940 self._update_inplace(result)
4941 else:
4942 1 1 1.0 0.1 return result
I stopped going into the subroutines at that point because it already highlights where the pd.Series.clip
does much more work than the np.ndarray.clip
. Just compare the total time of the np.clip
call on the values
(55 timer units) to one of the first checks in the pandas.Series.clip
method, the if np.any(pd.isnull(lower))
(158 timer units). At that point the pandas method didn't even start at clipping and it already takes 3 times longer.
However several of these "overheads" become insignificant when the array is big:
s = pd.Series(np.random.randint(0, 100, 1000000))
%lprun -f np.clip -f np.core.fromnumeric._wrapfunc -f pd.Series.clip -f pd.Series._clip_with_scalar np.clip(s, a_min=None, a_max=1)
Timer unit: 4.10256e-07 s
Total time: 0.00593476 s
File: numpy\core\fromnumeric.py
Function: clip at line 1673
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1673 def clip(a, a_min, a_max, out=None):
1674 """
...
1726 """
1727 1 14466 14466.0 100.0 return _wrapfunc(a, 'clip', a_min, a_max, out=out)
Total time: 0.00592779 s
File: numpy\core\fromnumeric.py
Function: _wrapfunc at line 55
Line # Hits Time Per Hit % Time Line Contents
==============================================================
55 def _wrapfunc(obj, method, *args, **kwds):
56 1 1 1.0 0.0 try:
57 1 14448 14448.0 100.0 return getattr(obj, method)(*args, **kwds)
58
59 # An AttributeError occurs if the object does not have
60 # such a method in its class.
61
62 # A TypeError occurs if the object does have such a method
63 # in its class, but its signature is not identical to that
64 # of NumPy's. This situation has occurred in the case of
65 # a downstream library like 'pandas'.
66 except (AttributeError, TypeError):
67 return _wrapit(obj, method, *args, **kwds)
Total time: 0.00591302 s
File: pandas\core\generic.py
Function: clip at line 4969
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4969 def clip(self, lower=None, upper=None, axis=None, inplace=False,
4970 *args, **kwargs):
4971 """
...
5021 """
5022 1 17 17.0 0.1 if isinstance(self, ABCPanel):
5023 raise NotImplementedError("clip is not supported yet for panels")
5024
5025 1 14 14.0 0.1 inplace = validate_bool_kwarg(inplace, 'inplace')
5026
5027 1 97 97.0 0.7 axis = nv.validate_clip_with_axis(axis, args, kwargs)
5028
5029 # GH 17276
5030 # numpy doesn't like NaN as a clip value
5031 # so ignore
5032 1 125 125.0 0.9 if np.any(pd.isnull(lower)):
5033 1 2 2.0 0.0 lower = None
5034 1 30 30.0 0.2 if np.any(pd.isnull(upper)):
5035 upper = None
5036
5037 # GH 2747 (arguments were reversed)
5038 1 2 2.0 0.0 if lower is not None and upper is not None:
5039 if is_scalar(lower) and is_scalar(upper):
5040 lower, upper = min(lower, upper), max(lower, upper)
5041
5042 # fast-path for scalars
5043 1 2 2.0 0.0 if ((lower is None or (is_scalar(lower) and is_number(lower))) and
5044 1 32 32.0 0.2 (upper is None or (is_scalar(upper) and is_number(upper)))):
5045 1 14092 14092.0 97.8 return self._clip_with_scalar(lower, upper, inplace=inplace)
5046
5047 result = self
5048 if lower is not None:
5049 result = result.clip_lower(lower, axis, inplace=inplace)
5050 if upper is not None:
5051 if inplace:
5052 result = self
5053 result = result.clip_upper(upper, axis, inplace=inplace)
5054
5055 return result
Total time: 0.00575753 s
File: pandas\core\generic.py
Function: _clip_with_scalar at line 4920
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4920 def _clip_with_scalar(self, lower, upper, inplace=False):
4921 1 2 2.0 0.0 if ((lower is not None and np.any(isna(lower))) or
4922 1 28 28.0 0.2 (upper is not None and np.any(isna(upper)))):
4923 raise ValueError("Cannot use an NA value as a clip threshold")
4924
4925 1 120 120.0 0.9 result = self.values
4926 1 3525 3525.0 25.1 mask = isna(result)
4927
4928 1 86 86.0 0.6 with np.errstate(all='ignore'):
4929 1 2 2.0 0.0 if upper is not None:
4930 1 9314 9314.0 66.4 result = np.where(result >= upper, upper, result)
4931 1 61 61.0 0.4 if lower is not None:
4932 result = np.where(result <= lower, lower, result)
4933 1 283 283.0 2.0 if np.any(mask):
4934 result[mask] = np.nan
4935
4936 1 78 78.0 0.6 axes_dict = self._construct_axes_dict()
4937 1 532 532.0 3.8 result = self._constructor(result, **axes_dict).__finalize__(self)
4938
4939 1 2 2.0 0.0 if inplace:
4940 self._update_inplace(result)
4941 else:
4942 1 1 1.0 0.0 return result
There are still multiple function calls, for example isna
and np.where
, that take a significant amount of time, but overall this is at least comparable to the np.ndarray.clip
time (that's in the regime where the timing difference is ~3 on my computer).
The takeaway should probably be:
Used versions:
Python 3.6.3 64-bit on Windows 10
Numpy 1.13.3
Pandas 0.21.1
There are two parts to the performance difference to be aware of here:
pandas
being extra helpful)pd.clip
actually calls np.where
)Running this on a very small array should demonstrate the difference in Python overhead. For numpy, this is understandably very small, however pandas does a lot of checking (null values, more flexible argument processing, etc) before getting to the heavy number crunching. I've tried to show a rough breakdown of the stages which the two codes go through before hitting C code bedrock.
data = pd.Series(np.random.random(100))
When using np.clip
on an ndarray
, the overhead is simply the numpy wrapper function calling the object's method:
>>> %timeit np.clip(data.values, 0.2, 0.8) # numpy wrapper, calls .clip() on the ndarray
>>> %timeit data.values.clip(0.2, 0.8) # C function call
2.22 µs ± 125 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.32 µs ± 20.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Pandas spends more time checking for edge cases before getting to the algorithm:
>>> %timeit np.clip(data, a_min=0.2, a_max=0.8) # numpy wrapper, calls .clip() on the Series
>>> %timeit data.clip(lower=0.2, upper=0.8) # pandas API method
>>> %timeit data._clip_with_scalar(0.2, 0.8) # lowest level python function
102 µs ± 1.54 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
90.4 µs ± 1.01 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
73.7 µs ± 805 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Relative to overall time, the overhead of both libraries before hitting C code is pretty significant. For numpy, the single wrapping instruction takes as much time to execute as the numeric processing. Pandas has ~30x more overhead just in the first two layers of function calls.
To isolate what is happening at the algorithm level, we should check this on a larger array and benchmark the same functions:
>>> data = pd.Series(np.random.random(1000000))
>>> %timeit np.clip(data.values, 0.2, 0.8)
>>> %timeit data.values.clip(0.2, 0.8)
2.85 ms ± 37.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.85 ms ± 15.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit np.clip(data, a_min=0.2, a_max=0.8)
>>> %timeit data.clip(lower=0.2, upper=0.8)
>>> %timeit data._clip_with_scalar(0.2, 0.8)
12.3 ms ± 135 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
12.3 ms ± 115 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
12.2 ms ± 76.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
The python overhead in both cases is now negligible; time for wrapper functions and argument checking is small relative to the calculation time on 1 million values. However there is a 3-4x speed difference which can be attributed to numeric implementation. By investigating a bit in the source code, we see that the pandas
implementation of clip
actually uses np.where
, not np.clip
:
def clip_where(data, lower, upper):
''' Actual implementation in pd.Series._clip_with_scalar (minus NaN handling). '''
result = data.values
result = np.where(result >= upper, upper, result)
result = np.where(result <= lower, lower, result)
return pd.Series(result)
def clip_clip(data, lower, upper):
''' What would happen if we used ndarray.clip instead. '''
return pd.Series(data.values.clip(lower, upper))
The additional effort required to check each boolean condition separately before doing a conditional replace would seem to account for the speed difference. Specifying both upper
and lower
would result in 4 passes through the numpy array (two inequality checks and two calls to np.where
). Benchmarking these two functions shows that 3-4x speed ratio:
>>> %timeit clip_clip(data, lower=0.2, upper=0.8)
>>> %timeit clip_where(data, lower=0.2, upper=0.8)
11.1 ms ± 101 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.97 ms ± 76.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
I'm not sure why the pandas devs went with this implementation. np.clip
may be a newer API function that previously required a workaround. There is also a little more to it than I've gone into here, since pandas checks for various case before running the final algorithm, and this is only one of the implementations that may be called.
The reason why the performance differs is because numpy first tends to search for pandas implementation of the function using getattr
than doing the same in builtin numpy functions when a pandas object is passed.
Its not the numpy over the pandas object that is slow, its the pandas version.
When you do
np.clip(pd.Series([1,2,3,4,5]),a_min=None,amax=1)
_wrapfunc
is being called :
# Code from source
def _wrapfunc(obj, method, *args, **kwds):
try:
return getattr(obj, method)(*args, **kwds)
Due to _wrapfunc
's getattr
method :
getattr(pd.Series([1,2,3,4,5]),'clip')(None, 1)
# Equivalent to `pd.Series([1,2,3,4,5]).clip(lower=None,upper=1)`
# 0 1
# 1 1
# 2 1
# 3 1
# 4 1
# dtype: int64
If you go through the pandas implementation there is a lot of pre checking work that is done. Its the reason why the functions which has the pandas implementation done via numpy has such difference in speed.
Not only clip, functions
like cumsum
,cumprod
,reshape
,searchsorted
,transpose
and much more uses pandas version of them than numpy when you pass them a pandas object.
It might appear numpy is doing the work over those objects but under the hood its the pandas function.
Just read the source code, it's clear.
def clip(a, a_min, a_max, out=None):
"""a : array_like Array containing elements to clip."""
return _wrapfunc(a, 'clip', a_min, a_max, out=out)
def _wrapfunc(obj, method, *args, **kwds):
try:
return getattr(obj, method)(*args, **kwds)
#This situation has occurred in the case of
# a downstream library like 'pandas'.
except (AttributeError, TypeError):
return _wrapit(obj, method, *args, **kwds)
def _wrapit(obj, method, *args, **kwds):
try:
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
result = getattr(asarray(obj), method)(*args, **kwds)
if wrap:
if not isinstance(result, mu.ndarray):
result = asarray(result)
result = wrap(result)
return result
after pandas v0.13.0_ahl1,pandas has it's own implement of clip
.