Reading Excel in R: how to find the start cell in messy spreadsheets

后端 未结 7 1707
暗喜
暗喜 2020-12-28 10:17

I\'m trying to write R code to read data from a mess of old spreadsheets. The exact location of the data varies from sheet to sheet: the only constant is that the first co

相关标签:
7条回答
  • 2020-12-28 10:19

    In those cases it's important to know the possible conditions of your data. I'm gonna assume that you want only remove columns and rows that doesn't confrom your table.

    I have this Excel book:

    I added 3 blank columns at left becouse when I loaded in R with one column the program omits them. Thats for confirm that R omits empty cols at the left.

    First: load data

    library(xlsx)
    dat <- read.xlsx('book.xlsx', sheetIndex = 1)
    head(dat)
    
                MY.COMPANY.PTY.LTD            NA.
    1             MC  Pension Fund           <NA>
    2    GROSS PERFORMANCE DETAILS           <NA>
    3 updated  by IG on 20/04/2017           <NA>
    4                         <NA> Monthly return
    5                       Mar-14         0.0097
    6                       Apr-14          6e-04
    

    Second: I added some cols with NA and '' values in the case that your data contain some

    dat$x2 <- NA
    dat$x4 <- NA
    head(dat)
    
                MY.COMPANY.PTY.LTD            NA. x2 x4
    1             MC  Pension Fund           <NA> NA NA
    2    GROSS PERFORMANCE DETAILS           <NA> NA NA
    3 updated  by IG on 20/04/2017           <NA> NA NA
    4                         <NA> Monthly return NA NA
    5                       Mar-14         0.0097 NA NA
    6                       Apr-14          6e-04 NA NA
    

    Third: Remove columns when all values are NA and ''. I have to deal with that kind of problems in past

    colSelect <- apply(dat, 2, function(x) !(length(x) == length(which(x == '' | is.na(x)))))
    dat2 <- dat[, colSelect]
    head(dat2)
    
                MY.COMPANY.PTY.LTD            NA.
    1             MC  Pension Fund           <NA>
    2    GROSS PERFORMANCE DETAILS           <NA>
    3 updated  by IG on 20/04/2017           <NA>
    4                         <NA> Monthly return
    5                       Mar-14         0.0097
    6                       Apr-14          6e-04
    

    Fourth: Keep only rows with complete observations (it's what I supose from your example)

    rowSelect <- apply(dat2, 1, function(x) !any(is.na(x)))
    dat3 <- dat2[rowSelect, ]
    head(dat3)
    
       MY.COMPANY.PTY.LTD     NA.
    5              Mar-14  0.0097
    6              Apr-14   6e-04
    7              May-14  0.0189
    8              Jun-14   0.008
    9              Jul-14 -0.0199
    10             Ago-14 0.00697
    

    Finally if you want to keep the header you can make something like this:

    colnames(dat3) <- as.matrix(dat2[which(rowSelect)[1] - 1, ])
    

    or

    colnames(dat3) <- c('Month', as.character(dat2[which(rowSelect)[1] - 1, 2]))
    dat3
    
        Month Monthly return
    5  Mar-14         0.0097
    6  Apr-14          6e-04
    7  May-14         0.0189
    8  Jun-14          0.008
    9  Jul-14        -0.0199
    10 Ago-14        0.00697
    
    0 讨论(0)
  • 2020-12-28 10:20

    Here is how I would tackle it.

    STEP 1
    Read the excel spreadsheet in without the headers.

    STEP 2
    Find the row index for your string Monthly return in this case

    STEP 3
    Filter from the identified row (or column or both), prettify a little and done.

    Here is what a sample function looks like. It works for your example no matter where it is in the spreadsheet. You can play around with regex to make it more robust.

    Function Definition:

    library(xlsx)
    extract_return <-  function(path = getwd(), filename = "Mysheet.xlsx", sheetnum = 1){
                           filepath = paste(path, "/", filename, sep = "")
                           input = read.xlsx(filepath, sheetnum, header = FALSE)
                           start_idx = which(input == "Monthly return", arr.ind = TRUE)[1]
                           output = input[start_idx:dim(input)[1],]
                           rownames(output) <- NULL
                           colnames(output) <- c("Date","Monthly Return")
                           output = output[-1, ]  
                           return(output)
                      }
    

    Example:

    final_df <- extract_return(
                    path = "~/Desktop", 
                    filename = "Apr2017.xlsx", 
                    sheetnum = 2)
    

    No matter ho many rows or columns you may have, the idea remains the same.. Give it a try and let me know.

    0 讨论(0)
  • 2020-12-28 10:22


    With a general purpose package like readxl, you'll have to read twice, if you want to enjoy automatic type conversion. I assume you have some sort of upper bound on the number of junk rows at the front? Here I assumed that was 10. I'm iterating over worksheets in one workbook, but the code would look pretty similar if iterating over workbooks. I'd write one function to handle a single worksheet or workbook then use lapply() or purrr::map(). This function will encapsulate the skip-learning read and the "real" read.

    library(readxl)
    
    two_passes <- function(path, sheet = NULL, n_max = 10) {
      first_pass <- read_excel(path = path, sheet = sheet, n_max = n_max)
      skip <- which(first_pass[[2]] == "Monthly return")
      message("For sheet '", if (is.null(sheet)) 1 else sheet,
              "' we'll skip ", skip, " rows.")  
      read_excel(path, sheet = sheet, skip = skip)
    }
    
    (sheets <- excel_sheets("so.xlsx"))
    #> [1] "sheet_one" "sheet_two"
    sheets <- setNames(sheets, sheets)
    lapply(sheets, two_passes, path = "so.xlsx")
    #> For sheet 'sheet_one' we'll skip 4 rows.
    #> For sheet 'sheet_two' we'll skip 6 rows.
    #> $sheet_one
    #> # A tibble: 6 × 2
    #>         X__1 `Monthly return`
    #>       <dttm>            <dbl>
    #> 1 2017-03-14          0.00907
    #> 2 2017-04-14          0.00069
    #> 3 2017-05-14          0.01890
    #> 4 2017-06-14          0.00803
    #> 5 2017-07-14         -0.01998
    #> 6 2017-08-14          0.00697
    #> 
    #> $sheet_two
    #> # A tibble: 6 × 2
    #>         X__1 `Monthly return`
    #>       <dttm>            <dbl>
    #> 1 2017-03-14          0.00907
    #> 2 2017-04-14          0.00069
    #> 3 2017-05-14          0.01890
    #> 4 2017-06-14          0.00803
    #> 5 2017-07-14         -0.01998
    #> 6 2017-08-14          0.00697
    
    0 讨论(0)
  • 2020-12-28 10:26
    grep("2014",dat)[1]
    

    This gives you first column with year. Or use "-14" or whatever you have for years. Similar way grep("Monthly",dat)[1] gives you second column

    0 讨论(0)
  • 2020-12-28 10:29

    Okay, at the format was specified for xls, update from csv to the correctly suggested xls loading.

    library(readxl)
    data <- readxl::read_excel(".../sampleData.xls", col_types = FALSE)
    

    You would get something similar to:

    data <- structure(list(V1 = structure(c(6L, 5L, 3L, 7L, 1L, 4L, 2L), .Label = c("", 
    "Apr 14", "GROSS PERFROANCE DETAILS", "Mar-14", "MC Pension Fund", 
    "MY COMPANY PTY LTD", "updated by JS on 6/4/2017"), class = "factor"), 
        V2 = structure(c(1L, 1L, 1L, 1L, 4L, 3L, 2L), .Label = c("", 
        "0.069%", "0.907%", "Monthly return"), class = "factor")), .Names = c("V1", 
    "V2"), class = "data.frame", row.names = c(NA, -7L))
    

    then you can dynamincally filter on the "Monthly return" cell and identify your matrix.

    targetCell <- which(data == "Monthly return", arr.ind = T)
    returns <- data[(targetCell[1] + 1):nrow(data), (targetCell[2] - 1):targetCell[2]]
    
    0 讨论(0)
  • 2020-12-28 10:39

    This is a tidy alternative that avoids the multiple reads issue discussed above. However, when doing benchmarks, Rafael Zayas's answer still wins out.

    library("tidyxl")
    library("unpivotr")
    library("tidyr")
    library("dplyr")
    
    tidy_solution <- function() {
        raw <- xlsx_cells("messyExcel.xlsx")
    
        start <- raw %>%
            filter_all(any_vars(. %in% c("Monthly return"))) %>%
            select(row, col)
    
        month.col <- raw %>%
            filter(row >= start$row + 1, col == start$col - 1) %>%
            pivot_wider(date, col)
    
        return.col <- raw %>%
            filter(row >= start$row + 1, col == start$col) %>%
            pivot_wider(numeric, col)
     
        output <- cbind(month.col, return.col)
     }
    
    # My Solution
                expr     min       lq     mean   median      uq     max neval
    tidy_solution() 29.0372 30.40305 32.13793 31.36925 32.9812 56.6455   100
    
    # Rafael's
                    expr     min      lq     mean   median       uq     max neval
    original_solution() 21.4405 23.8009 25.86874 25.10865 26.99945 59.4128   100
    
    0 讨论(0)
提交回复
热议问题