Subtraction operation using only increment, loop, assign, zero

后端 未结 1 1183
太阳男子
太阳男子 2020-12-28 10:04

I am trying to build up subtraction, addition, division, multiplication and other operations using only following ones:

  1. incr(x) - Once this function is called
相关标签:
1条回答
  • 2020-12-28 10:10

    Stephen Cole Kleene devised a way to perform integer subtraction using integer addition. However, it assumes that you cannot have negative integers. For example:

    0 - 1 = 0
    1 - 1 = 0
    2 - 1 = 1
    3 - 1 = 2
    4 - 1 = 3
    5 - 2 = 3
    6 - 3 = 3
    6 - 4 = 2
    6 - 5 = 1
    6 - 6 = 0
    6 - 7 = 0
    

    In your question, you implemented the addition operation using the increment operation.

    Similarly, you can implement the subtraction operation using the decrement operation as follows:

    sub(x, y) {
        loop y
            { x = decr(x) }
        return x
    }
    

    Now, all we need to do is implement the decrement operation.

    This is where the genuis of Kleene shines:

    decr(x) {
        y = 0
        z = 0
    
        loop x {
            y = z
            z = incr(z)
        }
    
        return y
    }
    

    Here we've used all the four operations. This is how it works:

    1. We have two base cases, y (the base case for 0) and z (the base case for 1):

      y = 0 - 1 = 0
      z = 1 - 1 = 0
      

      Hence, we initialize them both to 0.

    2. When x is 0 we run the loop 0 times (i.e. never) and then we simply return y = 0.

    3. When x is 1 then we run the loop once, assign y = z and then simply return y = z = 0.

    Notice that every time we run the loop y holds the result of the current iteration while z holds the result of the next iteration. This is the reason why we require two base cases. The decrement function is not a continuous function. It is a piecewise function:

    decr(0)     = 0
    decr(n + 1) = n
    

    Kleene realized this when he went to the dentist and the dentist extracted two of his teeth. He was frustrated while trying to solve this very problem and when the dentist extracted two of his teeth he realized that he required two base cases.

    0 讨论(0)
提交回复
热议问题