Paraphrasing from in \"Programming Pearls\" book (about c language on older machines, since book is from the late 90\'s):
Integer arithmetic operations (+
The modulus/modulo operation is usually understood as the integer equivalent of the remainder operation - a side effect or counterpart to division.
Except for some degenerate cases (where the divisor is a power of the operating base - i.e. a power of 2 for most number formats) this is just as expensive as integer division!
So the question is really, why is integer division so expensive?
I don't have the time or expertise to analyze this mathematically, so I'm going to appeal to grade school maths:
Consider the number of lines of working out in the notebook (not including the inputs) required for:
So in simple terms, this should give you a feel for why division and hence modulo is slower: computers still have to do long division in the same stepwise fashion tha you did in grade school.
If this makes no sense to you; you may have been brought up on school math a little more modern than mine (30+ years ago).
The Order/Big O notation used above as O(something) expresses the complexity of a computation in terms of the size of its inputs, and expresses a fact about its execution time. http://en.m.wikipedia.org/wiki/Big_O_notation
O(1) executes in constant (but possibly large) time. O(N) takes as much time as the size of its data-so if the data is 32 bits it takes 32 times the O(1) time of the step to calculate one of its N steps, and O(N^2) takes N times N (N squared) the time of its N steps (or possibly N times MN for some constant M). Etc.
In the above working I have used O(N) rather than O(N^2) for addition since the 32 or 64 bits of the first input are calculated in parallel by the CPU. In a hypothetical 1 bit machine a 32 bit addition operation would be O(32^2) and change. The same order reduction applies to the other operations too.