I\'m trying to come up with something to solve the following:
Given a max-heap represented as an array, return the kth largest element without modifyi
No, there's no O(log n)-time algorithm, by a simple cell probe lower bound. Suppose that k is a power of two (without loss of generality) and that the heap looks like (min-heap incoming because it's easier to label, but there's no real difference)
1
2 3
4 5 6 7
.............
permutation of [k, 2k).
In the worst case, we have to read the entire permutation, because there are no order relations imposed by the heap, and as long as k is not found, it could be in any location not yet examined. This takes time Omega(k), matching the (complicated!) algorithm posted by templatetypedef.
Max-heap in an array: element at i is larger than elements at 2*i+1 and 2*i+2
(i
is 0-based)
You'll need another max heap (insert
, pop
, empty
) with element pairs (value, index)
sorted by value
. Pseudocode (without boundary checks):
input: k
1. insert (at(0), 0)
2. (v, i) <- pop and k <- k - 1
3. if k == 0 return v
4. insert (at(2*i+1), 2*i+1) and insert (at(2*+2), 2*+2)
5. goto 2
Runtime evaluation
The max-heap can have many ways, a better case is a complete sorted array, and in other extremely case, the heap can have a total asymmetric structure.
Here can see this:
In the first case, the kth lagest element is in the kth position, you can compute in O(1) with a array representation of heap. But, in generally, you'll need to check between (k, 2k) elements, and sort them (or partial sort with another heap). As far as I know, it's O(K·log(k))
And the algorithm:
Input:
Integer kth <- 8
Heap heap <- {19,18,10,17,14,9,4,16,15,13,12}
BEGIN
Heap positionHeap <- Heap with comparation: ((n0,n1)->compare(heap[n1], heap[n0]))
Integer childPosition
Integer candidatePosition <- 0
Integer count <- 0
positionHeap.push(candidate)
WHILE (count < kth) DO
candidatePosition <- positionHeap.pop();
childPosition <- candidatePosition * 2 + 1
IF (childPosition < size(heap)) THEN
positionHeap.push(childPosition)
childPosition <- childPosition + 1
IF (childPosition < size(heap)) THEN
positionHeap.push(childPosition)
END-IF
END-IF
count <- count + 1
END-WHILE
print heap[candidate]
END-BEGIN
EDITED
I found "Optimal Algorithm of Selection in a min-heap" by Frederickson here: ftp://paranoidbits.com/ebooks/An%20Optimal%20Algorithm%20for%20Selection%20in%20a%20Min-Heap.pdf
To the best of my knowledge, there's no easy algorithm for solving this problem. The best algorithm I know of is due to Frederickson and it isn't easy. You can check out the paper here, but it might be behind a paywall. It runs in time O(k) and this is claimed to be the best possible time, so I suspect that a log-time solution doesn't exist.
If I find a better algorithm than this, I'll be sure to let you know.
Hope this helps!