Scikit-learn: How to run KMeans on a one-dimensional array?

前端 未结 2 1654
暖寄归人
暖寄归人 2020-12-25 12:28

I have an array of 13.876(13,876) values between 0 and 1. I would like to apply sklearn.cluster.KMeans to only this vector to find the different clusters in whi

相关标签:
2条回答
  • 2020-12-25 13:04

    Read about Jenks Natural Breaks. Function in Python found the link from the article:

    def get_jenks_breaks(data_list, number_class):
        data_list.sort()
        mat1 = []
        for i in range(len(data_list) + 1):
            temp = []
            for j in range(number_class + 1):
                temp.append(0)
            mat1.append(temp)
        mat2 = []
        for i in range(len(data_list) + 1):
            temp = []
            for j in range(number_class + 1):
                temp.append(0)
            mat2.append(temp)
        for i in range(1, number_class + 1):
            mat1[1][i] = 1
            mat2[1][i] = 0
            for j in range(2, len(data_list) + 1):
                mat2[j][i] = float('inf')
        v = 0.0
        for l in range(2, len(data_list) + 1):
            s1 = 0.0
            s2 = 0.0
            w = 0.0
            for m in range(1, l + 1):
                i3 = l - m + 1
                val = float(data_list[i3 - 1])
                s2 += val * val
                s1 += val
                w += 1
                v = s2 - (s1 * s1) / w
                i4 = i3 - 1
                if i4 != 0:
                    for j in range(2, number_class + 1):
                        if mat2[l][j] >= (v + mat2[i4][j - 1]):
                            mat1[l][j] = i3
                            mat2[l][j] = v + mat2[i4][j - 1]
            mat1[l][1] = 1
            mat2[l][1] = v
        k = len(data_list)
        kclass = []
        for i in range(number_class + 1):
            kclass.append(min(data_list))
        kclass[number_class] = float(data_list[len(data_list) - 1])
        count_num = number_class
        while count_num >= 2:  # print "rank = " + str(mat1[k][count_num])
            idx = int((mat1[k][count_num]) - 2)
            # print "val = " + str(data_list[idx])
            kclass[count_num - 1] = data_list[idx]
            k = int((mat1[k][count_num] - 1))
            count_num -= 1
        return kclass
    

    Use and visualization:

    import numpy as np
    import matplotlib.pyplot as plt
    
    def get_jenks_breaks(...):...
    
    x = np.random.random(30)
    breaks = get_jenks_breaks(x, 5)
    
    for line in breaks:
        plt.plot([line for _ in range(len(x))], 'k--')
    
    plt.plot(x)
    plt.grid(True)
    plt.show()
    

    Result:

    0 讨论(0)
  • 2020-12-25 13:09

    You have many samples of 1 feature, so you can reshape the array to (13,876, 1) using numpy's reshape:

    from sklearn.cluster import KMeans
    import numpy as np
    x = np.random.random(13876)
    
    km = KMeans()
    km.fit(x.reshape(-1,1))  # -1 will be calculated to be 13876 here
    
    0 讨论(0)
提交回复
热议问题