The command xgb.importance
returns a graph of feature importance measured by an f score.
What does this f score repres
This is a metric that simply sums up how many times each feature is split on. It is analogous to the Frequency metric in the R version.https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
It is about as basic a feature importance metric as you can get.
i.e. How many times was this variable split on?
The code for this method shows it is simply adding of the presence of a given feature in all the trees.
[here..https://github.com/dmlc/xgboost/blob/master/python-package/xgboost/core.py#L953][1]
def get_fscore(self, fmap=''):
"""Get feature importance of each feature.
Parameters
----------
fmap: str (optional)
The name of feature map file
"""
trees = self.get_dump(fmap) ## dump all the trees to text
fmap = {}
for tree in trees: ## loop through the trees
for line in tree.split('\n'): # text processing
arr = line.split('[')
if len(arr) == 1: # text processing
continue
fid = arr[1].split(']')[0] # text processing
fid = fid.split('<')[0] # split on the greater/less(find variable name)
if fid not in fmap: # if the feature id hasn't been seen yet
fmap[fid] = 1 # add it
else:
fmap[fid] += 1 # else increment it
return fmap # return the fmap, which has the counts of each time a variable was split on
I found this answer correct and thorough. It shows the implementation of the feature_importances.
https://stats.stackexchange.com/questions/162162/relative-variable-importance-for-boosting