Dynamic programming
Idea:Instead of recomputing the same value multiple times you just store the value calculated and use them as you go along.
f(n)=f(n-1)+f(n-2)
with f(0)=0,f(1)=1.
So at the point when you have calculated f(n-1) you can easily calculate f(n) if you store the values of f(n) and f(n-1).
Let's take an array of Bignums first. A[1..200].
Initialize them to -1.
Pseudocode
fact(n)
{
if(A[n]!=-1) return A[n];
A[0]=0;
A[1]=1;
for i=2 to n
A[i]= addition of A[i],A[i-1];
return A[n]
}
This runs in O(n) time. Check it out yourself.
This technique is also called memoization.
The IDEA
Dynamic programming (usually referred to as DP ) is a very powerful technique to solve a particular class of problems. It demands very elegant formulation of the approach and simple thinking and the coding part is very easy. The idea is very simple, If you have solved a problem with the given input, then save the result for future reference, so as to avoid solving the same problem again.. shortly 'Remember your Past'.
If the given problem can be broken up in to smaller sub-problems and these smaller subproblems are in turn divided in to still-smaller ones, and in this process, if you observe some over-lappping subproblems
, then its a big hint for DP. Also, the optimal solutions to the subproblems contribute to the optimal solution of the given problem ( referred to as the Optimal Substructure Property
).
There are two ways of doing this.
1.) Top-Down : Start solving the given problem by breaking it down. If you see that the problem has been solved already, then just return the saved answer. If it has not been solved, solve it and save the answer. This is usually easy to think of and very intuitive. This is referred to as Memoization. (I have used this idea).
2.) Bottom-Up : Analyze the problem and see the order in which the sub-problems are solved and start solving from the trivial subproblem, up towards the given problem. In this process, it is guaranteed that the subproblems are solved before solving the problem. This is referred to as Dynamic Programming. (MinecraftShamrock
used this idea)
There's more!
(Other ways to do this)
Look our quest to get a better solution doesn't end here. You will see a different approach-
If you know how to solve recurrence relation
then you will find a solution to this relation
f(n)=f(n-1)+f(n-2) given f(0)=0,f(1)=1
You will arrive at the formula after solving it-
f(n)= (1/sqrt(5))((1+sqrt(5))/2)^n - (1/sqrt(5))((1-sqrt(5))/2)^n
which can be written in more compact form
f(n)=floor((((1+sqrt(5))/2)^n) /sqrt(5) + 1/2)
Complexity
You can get the power a number in O(logn) operations.
You have to learn the Exponentiation by squaring.
EDIT: It is good to point out that this doesn't necessarily mean that the fibonacci number can be found in O(logn). Actually the number of digits we need to calculate frows linearly. Probably because of the position where I stated that it seems to claim the wrong idea that factorial of a number can be calculated in O(logn) time.
[Bakurui,MinecraftShamrock commented on this]