Is there a way to do something similar to SQL\'s LIKE syntax on a pandas text DataFrame column, such that it returns a list of indices, or a list of booleans that can be use
You can use the Series method str.startswith (which takes a regex):
In [11]: s = pd.Series(['aa', 'ab', 'ca', np.nan])
In [12]: s.str.startswith('a', na=False)
Out[12]:
0 True
1 True
2 False
3 False
dtype: bool
You can also do the same with str.contains (using a regex):
In [13]: s.str.contains('^a', na=False)
Out[13]:
0 True
1 True
2 False
3 False
dtype: bool
So you can do df[col].str.startswith
...
See also the SQL comparison section of the docs.
Note: (as pointed out by OP) by default NaNs will propagate (and hence cause an indexing error if you want to use the result as a boolean mask), we use this flag to say that NaN should map to False.
In [14]: s.str.startswith('a') # can't use as boolean mask
Out[14]:
0 True
1 True
2 False
3 NaN
dtype: object
SQL - WHERE column_name LIKE 's%'
Python - column_name.str.startswith('s')
SQL - WHERE column_name LIKE '%s'
Python - column_name.str.endswith('s')
SQL - WHERE column_name LIKE '%s%'
Python - column_name.str.contains('s')
For more options, check : https://pandas.pydata.org/pandas-docs/stable/reference/series.html
you can use
s.str.contains('a', case = False)