Holt-Winters time series forecasting with statsmodels

后端 未结 2 1713
一向
一向 2020-12-24 15:12

I tried forecasting with holt-winters model as shown below but I keep getting a prediction that is not consistent with what I expect. I also showed a visualizat

相关标签:
2条回答
  • 2020-12-24 15:42

    This is improvisation of above answer https://stackoverflow.com/users/2285236/ayhan

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from statsmodels.tsa.holtwinters import ExponentialSmoothing
    from sklearn.metrics import mean_squared_error
    from math import sqrt
    
    from matplotlib.pylab import rcParams
    rcParams['figure.figsize'] = 15, 7
    
    df = pd.read_csv('D:/WORK/international-airline-passengers.csv', 
                     parse_dates=['Month'], 
                     index_col='Month'
    )
    df.index.freq = 'MS'
    train, test = df.iloc[:132, 0], df.iloc[132:, 0]
    # model = ExponentialSmoothing(train, seasonal='mul', seasonal_periods=12).fit()
    model = ExponentialSmoothing(train, trend='add', seasonal='add', seasonal_periods=12, damped=True)
    hw_model = model.fit(optimized=True, use_boxcox=False, remove_bias=False)
    pred = hw_model.predict(start=test.index[0], end=test.index[-1])
    
    plt.plot(train.index, train, label='Train')
    plt.plot(test.index, test, label='Test')
    plt.plot(pred.index, pred, label='Holt-Winters')
    plt.legend(loc='best');
    

    Here is how I got the best parameters

    def exp_smoothing_configs(seasonal=[None]):
        models = list()
        # define config lists
        t_params = ['add', 'mul', None]
        d_params = [True, False]
        s_params = ['add', 'mul', None]
        p_params = seasonal
        b_params = [True, False]
        r_params = [True, False]
        # create config instances
        for t in t_params:
            for d in d_params:
                for s in s_params:
                    for p in p_params:
                        for b in b_params:
                            for r in r_params:
                                cfg = [t,d,s,p,b,r]
                                models.append(cfg)
        return models
    
    cfg_list = exp_smoothing_configs(seasonal=[12]) #[0,6,12]
    

    edf = df['Passengers']
    ts = edf[:'1959-12-01'].copy()
    ts_v = edf['1960-01-01':].copy()
    ind = edf.index[-12:]  # this will select last 12 months' indexes
    
    print("Holt's Winter Model")
    best_RMSE = np.inf
    best_config = []
    t1 = d1 = s1 = p1 = b1 = r1 = ''
    for j in range(len(cfg_list)):
        print(j)
        try:
            cg = cfg_list[j]
            print(cg)
            t,d,s,p,b,r = cg
            train = edf[:'1959'].copy()
            test = edf['1960-01-01':'1960-12-01'].copy()
            # define model
            if (t == None):
                model = ExponentialSmoothing(ts, trend=t, seasonal=s, seasonal_periods=p)
            else:
                model = ExponentialSmoothing(ts, trend=t, damped=d, seasonal=s, seasonal_periods=p)
            # fit model
            model_fit = model.fit(optimized=True, use_boxcox=b, remove_bias=r)
            # make one step forecast
            y_forecast = model_fit.forecast(12)
            rmse = np.sqrt(mean_squared_error(ts_v,y_forecast))
            print(rmse)
            if rmse < best_RMSE:
                best_RMSE = rmse
                best_config = cfg_list[j]
        except:
           continue
    

    Function to evaluate model

    def model_eval(y, predictions):
    
        # Import library for metrics
        from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
    
        # Mean absolute error (MAE)
        mae = mean_absolute_error(y, predictions)
    
        # Mean squared error (MSE)
        mse = mean_squared_error(y, predictions)
    
    
        # SMAPE is an alternative for MAPE when there are zeros in the testing data. It
        # scales the absolute percentage by the sum of forecast and observed values
        SMAPE = np.mean(np.abs((y - predictions) / ((y + predictions)/2))) * 100
    
    
        # Calculate the Root Mean Squared Error
        rmse = np.sqrt(mean_squared_error(y, predictions))
    
        # Calculate the Mean Absolute Percentage Error
        # y, predictions = check_array(y, predictions)
        MAPE = np.mean(np.abs((y - predictions) / y)) * 100
    
        # mean_forecast_error
        mfe = np.mean(y - predictions)
    
        # NMSE normalizes the obtained MSE after dividing it by the test variance. It
        # is a balanced error measure and is very effective in judging forecast
        # accuracy of a model.
    
        # normalised_mean_squared_error
        NMSE = mse / (np.sum((y - np.mean(y)) ** 2)/(len(y)-1))
    
    
        # theil_u_statistic
        # It is a normalized measure of total forecast error.
        error = y - predictions
        mfe = np.sqrt(np.mean(predictions**2))
        mse = np.sqrt(np.mean(y**2))
        rmse = np.sqrt(np.mean(error**2))
        theil_u_statistic =  rmse / (mfe*mse)
    
    
        # mean_absolute_scaled_error
        # This evaluation metric is used to over come some of the problems of MAPE and
        # is used to measure if the forecasting model is better than the naive model or
        # not.
    
    
        # Print metrics
        print('Mean Absolute Error:', round(mae, 3))
        print('Mean Squared Error:', round(mse, 3))
        print('Root Mean Squared Error:', round(rmse, 3))
        print('Mean absolute percentage error:', round(MAPE, 3))
        print('Scaled Mean absolute percentage error:', round(SMAPE, 3))
        print('Mean forecast error:', round(mfe, 3))
        print('Normalised mean squared error:', round(NMSE, 3))
        print('Theil_u_statistic:', round(theil_u_statistic, 3))
    

    print(best_RMSE, best_config)
    
    t1,d1,s1,p1,b1,r1 = best_config
    
    if t1 == None:
        hw_model1 = ExponentialSmoothing(ts, trend=t1, seasonal=s1, seasonal_periods=p1)
    else:
        hw_model1 = ExponentialSmoothing(ts, trend=t1, seasonal=s1, seasonal_periods=p1, damped=d1)
    
    fit2 = hw_model1.fit(optimized=True, use_boxcox=b1, remove_bias=r1)
    
    pred_HW = fit2.predict(start=pd.to_datetime('1960-01-01'), end = pd.to_datetime('1960-12-01'))
    # pred_HW = fit2.forecast(12)
    
    pred_HW = pd.Series(data=pred_HW, index=ind)
    df_pass_pred = pd.concat([df, pred_HW.rename('pred_HW')], axis=1)
    
    print(model_eval(ts_v, pred_HW))
    print('-*-'*20)
    
    # 15.570830579664698 ['add', True, 'add', 12, False, False]
    # Mean Absolute Error: 10.456
    # Mean Squared Error: 481.948
    # Root Mean Squared Error: 15.571
    # Mean absolute percentage error: 2.317
    # Scaled Mean absolute percentage error: 2.273
    # Mean forecast error: 483.689
    # Normalised mean squared error: 0.04
    # Theil_u_statistic: 0.0
    # None
    # -*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*--*-
    

    Summary:

    New Model results:

    Mean Absolute Error: 10.456
    Mean Squared Error: 481.948
    Root Mean Squared Error: 15.571
    Mean absolute percentage error: 2.317
    Scaled Mean absolute percentage error: 2.273
    Mean forecast error: 483.689
    Normalised mean squared error: 0.04
    Theil_u_statistic: 0.0
    

    Old Model Results:

    Mean Absolute Error: 20.682
    Mean Squared Error: 481.948
    Root Mean Squared Error: 23.719
    Mean absolute percentage error: 4.468
    Scaled Mean absolute percentage error: 4.56
    Mean forecast error: 466.704
    Normalised mean squared error: 0.093
    Theil_u_statistic: 0.0
    

    Bonus:

    You will get this nice dataframe where you can compare the original values with predicted values.

    df_pass_pred['1960':]
    

    output

                Passengers     pred_HW
    Month                             
    1960-01-01         417  417.826543
    1960-02-01         391  400.452916
    1960-03-01         419  461.804259
    1960-04-01         461  450.787208
    1960-05-01         472  472.695903
    1960-06-01         535  528.560823
    1960-07-01         622  601.265794
    1960-08-01         606  608.370401
    1960-09-01         508  508.869849
    1960-10-01         461  452.958727
    1960-11-01         390  407.634391
    1960-12-01         432  437.385058
    
    0 讨论(0)
  • 2020-12-24 15:50

    The main reason for the mistake is your start and end values. It forecasts the value for the first observation until the fifteenth. However, even if you correct that, Holt only includes the trend component and your forecasts will not carry the seasonal effects. Instead, use ExponentialSmoothing with seasonal parameters.

    Here's a working example for your dataset:

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from statsmodels.tsa.holtwinters import ExponentialSmoothing
    
    df = pd.read_csv('/home/ayhan/international-airline-passengers.csv', 
                     parse_dates=['Month'], 
                     index_col='Month'
    )
    df.index.freq = 'MS'
    train, test = df.iloc[:130, 0], df.iloc[130:, 0]
    model = ExponentialSmoothing(train, seasonal='mul', seasonal_periods=12).fit()
    pred = model.predict(start=test.index[0], end=test.index[-1])
    
    plt.plot(train.index, train, label='Train')
    plt.plot(test.index, test, label='Test')
    plt.plot(pred.index, pred, label='Holt-Winters')
    plt.legend(loc='best')
    

    which yields the following plot:

    0 讨论(0)
提交回复
热议问题