I\'m confused because it\'s going to be a problem if you first do OneHotEncoder
and then StandardScaler
because the scaler will also scale the colu
Sure thing. Just separately scale and one-hot-encode the separate columns as needed:
# Import libraries and download example data
from sklearn.preprocessing import StandardScaler, OneHotEncoder
dataset = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
print(dataset.head(5))
# Define which columns should be encoded vs scaled
columns_to_encode = ['rank']
columns_to_scale = ['gre', 'gpa']
# Instantiate encoder/scaler
scaler = StandardScaler()
ohe = OneHotEncoder(sparse=False)
# Scale and Encode Separate Columns
scaled_columns = scaler.fit_transform(dataset[columns_to_scale])
encoded_columns = ohe.fit_transform(dataset[columns_to_encode])
# Concatenate (Column-Bind) Processed Columns Back Together
processed_data = np.concatenate([scaled_columns, encoded_columns], axis=1)
Scikit-learn from version 0.20 provides sklearn.compose.ColumnTransformer
to do Column Transformer with Mixed Types. You can scale the numeric features and one-hot encode the categorical ones together. Below is the offical example(you can find the code here ):
# Author: Pedro Morales <part.morales@gmail.com>
#
# License: BSD 3 clause
from __future__ import print_function
import pandas as pd
import numpy as np
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV
np.random.seed(0)
# Read data from Titanic dataset.
titanic_url = ('https://raw.githubusercontent.com/amueller/'
'scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv')
data = pd.read_csv(titanic_url)
# We will train our classifier with the following features:
# Numeric Features:
# - age: float.
# - fare: float.
# Categorical Features:
# - embarked: categories encoded as strings {'C', 'S', 'Q'}.
# - sex: categories encoded as strings {'female', 'male'}.
# - pclass: ordinal integers {1, 2, 3}.
# We create the preprocessing pipelines for both numeric and categorical data.
numeric_features = ['age', 'fare']
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())])
categorical_features = ['embarked', 'sex', 'pclass']
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)])
# Append classifier to preprocessing pipeline.
# Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', LogisticRegression(solver='lbfgs'))])
X = data.drop('survived', axis=1)
y = data['survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))
Caution: this method is EXPERIMENTAL, some behaviors may change between releases without deprecation.
There are presently numerous methods to achieve the outcome required by the OP. 3 ways to do this are
np.concatenate()
- see this answer to the OP's question, already posted
scikit-learn's ColumnTransformer
scikit-learn's FeatureUnion
Using the example posted by @Max Power here, below is a minimum working snippet that does what the OP is looking for and brings together the transformed columns into a single Pandas dataframe. The output of all 3 approaches is shown
The common code for all 3 methods is
import numpy as np
import pandas as pd
# Import libraries and download example data
from sklearn.preprocessing import StandardScaler, OneHotEncoder
dataset = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
# Define which columns should be encoded vs scaled
columns_to_encode = ['rank']
columns_to_scale = ['gre', 'gpa']
# Instantiate encoder/scaler
scaler = StandardScaler()
ohe = OneHotEncoder(sparse=False)
Method 1. see code here. To show the output, can use
print(pd.DataFrame(processed_data).head())
Output of Method 1.
0 1 2 3 4 5
0 -1.800263 0.579072 0.0 0.0 1.0 0.0
1 0.626668 0.736929 0.0 0.0 1.0 0.0
2 1.840134 1.605143 1.0 0.0 0.0 0.0
3 0.453316 -0.525927 0.0 0.0 0.0 1.0
4 -0.586797 -1.209974 0.0 0.0 0.0 1.0
Method 2.
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
p = Pipeline(
[("coltransformer", ColumnTransformer(
transformers=[
("assessments", Pipeline([("scale", scaler)]), columns_to_scale),
("ranks", Pipeline([("encode", ohe)]), columns_to_encode),
]),
)]
)
print(pd.DataFrame(p.fit_transform(dataset)).head())
Output of Method 2.
0 1 2 3 4 5
0 -1.800263 0.579072 0.0 0.0 1.0 0.0
1 0.626668 0.736929 0.0 0.0 1.0 0.0
2 1.840134 1.605143 1.0 0.0 0.0 0.0
3 0.453316 -0.525927 0.0 0.0 0.0 1.0
4 -0.586797 -1.209974 0.0 0.0 0.0 1.0
Method 3.
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import FeatureUnion
class ItemSelector(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, x, y=None):
return self
def transform(self, df):
return df[self.key]
p = Pipeline([("union", FeatureUnion(
transformer_list=[
("assessments", Pipeline([
("selector", ItemSelector(key=columns_to_scale)),
("scale", scaler)
]),
),
("ranks", Pipeline([
("selector", ItemSelector(key=columns_to_encode)),
("encode", ohe)
]),
),
]))
])
print(pd.DataFrame(p.fit_transform(dataset)).head())
Output of Method 3.
0 1 2 3 4 5
0 -1.800263 0.579072 0.0 0.0 1.0 0.0
1 0.626668 0.736929 0.0 0.0 1.0 0.0
2 1.840134 1.605143 1.0 0.0 0.0 0.0
3 0.453316 -0.525927 0.0 0.0 0.0 1.0
4 -0.586797 -1.209974 0.0 0.0 0.0 1.0
Explanation
Method 1. is already explained.
Methods 2. and 3. accept the full dataset but only perform specific actions on subsets of the data. The modified/processed subsets are brought together (combined) into the final output.
Details
pandas==0.23.4
numpy==1.15.2
scikit-learn==0.20.0
Additional Notes
The 3 methods shown here are probably not the only possibilities....I am sure there are other methods to do this.
SOURCE USED
Updated link to binary.csv dataset
Can't get your point as OneHotEncoder
is used for nominal data, and StandardScaler
is used for numeric data. So you shouldn't use them together for your data.