I\'m trying to figure out the best way to compress a stream with Python\'s zlib
.
I\'ve got a file-like input stream (input
, below) and an o
Here is a cleaner, non-self-referencing version based on Ricardo Cárdenes' very helpful answer.
from gzip import GzipFile
from collections import deque
CHUNK = 16 * 1024
class Buffer (object):
def __init__ (self):
self.__buf = deque()
self.__size = 0
def __len__ (self):
return self.__size
def write (self, data):
self.__buf.append(data)
self.__size += len(data)
def read (self, size=-1):
if size < 0: size = self.__size
ret_list = []
while size > 0 and len(self.__buf):
s = self.__buf.popleft()
size -= len(s)
ret_list.append(s)
if size < 0:
ret_list[-1], remainder = ret_list[-1][:size], ret_list[-1][size:]
self.__buf.appendleft(remainder)
ret = ''.join(ret_list)
self.__size -= len(ret)
return ret
def flush (self):
pass
def close (self):
pass
class GzipCompressReadStream (object):
def __init__ (self, fileobj):
self.__input = fileobj
self.__buf = Buffer()
self.__gzip = GzipFile(None, mode='wb', fileobj=self.__buf)
def read (self, size=-1):
while size < 0 or len(self.__buf) < size:
s = self.__input.read(CHUNK)
if not s:
self.__gzip.close()
break
self.__gzip.write(s)
return self.__buf.read(size)
Advantages:
It's quite kludgy (self referencing, etc; just put a few minutes writing it, nothing really elegant), but it does what you want if you're still interested in using gzip
instead of zlib
directly.
Basically, GzipWrap
is a (very limited) file-like object that produces a gzipped file out of a given iterable (e.g., a file-like object, a list of strings, any generator...)
Of course, it produces binary so there was no sense in implementing "readline".
You should be able to expand it to cover other cases or to be used as an iterable object itself.
from gzip import GzipFile
class GzipWrap(object):
# input is a filelike object that feeds the input
def __init__(self, input, filename = None):
self.input = input
self.buffer = ''
self.zipper = GzipFile(filename, mode = 'wb', fileobj = self)
def read(self, size=-1):
if (size < 0) or len(self.buffer) < size:
for s in self.input:
self.zipper.write(s)
if size > 0 and len(self.buffer) >= size:
self.zipper.flush()
break
else:
self.zipper.close()
if size < 0:
ret = self.buffer
self.buffer = ''
else:
ret, self.buffer = self.buffer[:size], self.buffer[size:]
return ret
def flush(self):
pass
def write(self, data):
self.buffer += data
def close(self):
self.input.close()
This works (at least in python 3):
with s3.open(path, 'wb') as f:
gz = gzip.GzipFile(filename, 'wb', 9, f)
gz.write(b'hello')
gz.flush()
gz.close()
Here it writes to s3fs's file object with a gzip compression on it.
The magic is the f
parameter, which is GzipFile's fileobj
. You have to provide a file name for gzip's header.
Use the cStringIO (or StringIO) module in conjunction with zlib:
>>> import zlib
>>> from cStringIO import StringIO
>>> s.write(zlib.compress("I'm a lumberjack"))
>>> s.seek(0)
>>> zlib.decompress(s.read())
"I'm a lumberjack"
The gzip module supports compressing to a file-like object, pass a fileobj parameter to GzipFile, as well as a filename. The filename you pass in doesn't need to exist, but the gzip header has a filename field which needs to be filled out.
Update
This answer does not work. Example:
# tmp/try-gzip.py
import sys
import gzip
fd=gzip.GzipFile(fileobj=sys.stdin)
sys.stdout.write(fd.read())
output:
===> cat .bash_history | python tmp/try-gzip.py > tmp/history.gzip
Traceback (most recent call last):
File "tmp/try-gzip.py", line 7, in <module>
sys.stdout.write(fd.read())
File "/usr/lib/python2.7/gzip.py", line 254, in read
self._read(readsize)
File "/usr/lib/python2.7/gzip.py", line 288, in _read
pos = self.fileobj.tell() # Save current position
IOError: [Errno 29] Illegal seek