Two BSTs
(Binary Search Trees) are given. How to find largest common sub-tree in the given two binary trees
?
EDIT 1: Here
The following algorithm computes all the largest common subtrees of two binary trees (with no assumption that it is a binary search tree). Let S and T be two binary trees. The algorithm works from the bottom of the trees up, starting at the leaves. We start by identifying leaves with the same value. Then consider their parents and identify nodes with the same children. More generally, at each iteration, we identify nodes provided they have the same value and their children are isomorphic (or isomorphic after swapping the left and right children). This algorithm terminates with the collection of all pairs of maximal subtrees in T and S.
Here is a more detailed description:
Let S and T be two binary trees. For simplicity, we may assume that for each node n, the left child has value <= the right child. If exactly one child of a node n is NULL, we assume the right node is NULL. (In general, we consider two subtrees isomorphic if they are up to permutation of the left/right children for each node.)
(1) Find all leaf nodes in each tree.
(2) Define a bipartite graph B with edges from nodes in S to nodes in T, initially with no edges. Let R(S) and T(S) be empty sets. Let R(S)_next and R(T)_next also be empty sets.
(3) For each leaf node in S and each leaf node in T, create an edge in B if the nodes have the same value. For each edge created from nodeS in S to nodeT in T, add all the parents of nodeS to the set R(S) and all the parents of nodeT to the set R(T).
(4) For each node nodeS in R(S) and each node nodeT in T(S), draw an edge between them in B if they have the same value AND { (i): nodeS->left is connected to nodeT->left and nodeS->right is connected to nodeT->right, OR (ii): nodeS->left is connected to nodeT->right and nodeS->right is connected to nodeT->left, OR (iii): nodeS->left is connected to nodeT-> right and nodeS->right == NULL and nodeT->right==NULL
(5) For each edge created in step (4), add their parents to R(S)_next and R(T)_next.
(6) If (R(S)_next) is nonempty {
(i) swap R(S) and R(S)_next and swap R(T) and R(T)_next.
(ii) Empty the contents of R(S)_next and R(T)_next.
(iii) Return to step (4).
}
When this algorithm terminates, R(S) and T(S) contain the roots of all maximal subtrees in S and T. Furthermore, the bipartite graph B identifies all pairs of nodes in S and nodes in T that give isomorphic subtrees.
I believe this algorithm has complexity is O(n log n), where n is the total number of nodes in S and T, since the sets R(S) and T(S) can be stored in BST’s ordered by value, however I would be interested to see a proof.
I believe that I have an O(n + m)-time, O(n + m) space algorithm for solving this problem, assuming the trees are of size n and m, respectively. This algorithm assumes that the values in the trees are unique (that is, each element appears in each tree at most once), but they do not need to be binary search trees.
The algorithm is based on dynamic programming and works with the following intution: suppose that we have some tree T with root r and children T1 and T2. Suppose the other tree is S. Now, suppose that we know the maximum common subtree of T1 and S and of T2 and S. Then the maximum subtree of T and S
Therefore, we can compute the maximum common subtree (I'll abbreviate this as MCS) as follows. If MCS(T1, S) or MCS(T2, S) has the roots of T1 or T2 as roots, then the MCS we can get from T and S is given by the larger of MCS(T1, S) and MCS(T2, S). If exactly one of MCS(T1, S) and MCS(T2, S) has the root of T1 or T2 as a root (assume w.l.o.g. that it's T1), then look up r in S. If r has the root of T1 as a child, then we can extend that tree by a node and the MCS is given by the larger of this augmented tree and MCS(T2, S). Otherwise, if both MCS(T1, S) and MCS(T2, S) have the roots of T1 and T2 as roots, then look up r in S. If it has as a child the root of T1, we can extend the tree by adding in r. If it has as a child the root of T2, we can extend that tree by adding in r. Otherwise, we just take the larger of MCS(T1, S) and MCS(T2, S).
The formal version of the algorithm is as follows:
Overall, the runtime is O(n + m) time expected and O(n + m) space for the two hash tables.
To see a correctness proof, we proceed by induction on the height of the tree T. As a base case, if T has height zero, then we just return zero because the loop in (4) does not add anything to the hash table. If T has height one, then either it exists in T or it does not. If it exists in T, then it can't have any children at all, so we execute branch 4.3.1 and say that it has height one. Step (6) then reports that the MCS has size one, which is correct. If it does not exist, then we execute 4.2, putting zero into the hash table, so step (6) reports that the MCS has size zero as expected.
For the inductive step, assume that the algorithm works for all trees of height k' < k and consider a tree of height k. During our postorder walk of T, we will visit all of the nodes in the left subtree, then in the right subtree, and finally the root of T. By the inductive hypothesis, the table of MCS values will be filled in correctly for the left subtree and right subtree, since they have height ≤ k - 1 < k. Now consider what happens when we process the root. If the root doesn't appear in the tree S, then we put a zero into the table, and step (6) will pick the largest MCS value of some subtree of T, which must be fully contained in either its left subtree or right subtree. If the root appears in S, then we compute the size of the MCS rooted at the root of T by trying to link it with the MCS-es of its two children, which (inductively!) we've computed correctly.
Whew! That was an awesome problem. I hope this solution is correct!
EDIT: As was noted by @jonderry, this will find the largest common subgraph of the two trees, not the largest common complete subtree. However, you can restrict the algorithm to only work on subtrees quite easily. To do so, you would modify the inner code of the algorithm so that it records a subtree of size 0 if both subtrees aren't present with nonzero size. A similar inductive argument will show that this will find the largest complete subtree.
Though, admittedly, I like the "largest common subgraph" problem a lot more. :-)
Assuming there are no duplicate values in the trees:
LargestSubtree(Tree tree1, Tree tree2)
Int bestMatch := 0
Int bestMatchCount := 0
For each Node n in tree1 //should iterate breadth-first
//possible optimization: we can skip every node that is part of each subtree we find
Node n2 := BinarySearch(tree2(n.value))
Int matchCount := CountMatches(n, n2)
If (matchCount > bestMatchCount)
bestMatch := n.value
bestMatchCount := matchCount
End
End
Return ExtractSubtree(BinarySearch(tree1(bestMatch)), BinarySearch(tree2(bestMatch)))
End
CountMatches(Node n1, Node n2)
If (!n1 || !n2 || n1.value != n2.value)
Return 0
End
Return 1 + CountMatches(n1.left, n2.left) + CountMatches(n1.right, n2.right)
End
ExtractSubtree(Node n1, Node n2)
If (!n1 || !n2 || n1.value != n2.value)
Return nil
End
Node result := New Node(n1.value)
result.left := ExtractSubtree(n1.left, n2.left)
result.right := ExtractSubtree(n1.right, n2.right)
Return result
End
To briefly explain, this is a brute-force solution to the problem. It does a breadth-first walk of the first tree. For each node, it performs a BinarySearch
of the second tree to locate the corresponding node in that tree. Then using those nodes it evaluates the total size of the common subtree rooted there. If the subtree is larger than any previously found subtree, it remembers it for later so that it can construct and return a copy of the largest subtree when the algorithm completes.
This algorithm does not handle duplicate values. It could be extended to do so by using a BinarySearch
implementation that returns a list of all nodes with the given value, instead of just a single node. Then the algorithm could iterate this list and evaluate the subtree for each node and then proceed as normal.
The running time of this algorithm is O(n log m)
(it traverses n
nodes in the first tree, and performs a log m
binary-search operation for each one), putting it on par with most common sorting algorithms. The space complexity is O(1)
while running (nothing allocated beyond a few temporary variables), and O(n)
when it returns its result (because it creates an explicit copy of the subtree, which may not be required depending upon exactly how the algorithm is supposed to express its result). So even this brute-force approach should perform reasonably well, although as noted by other answers an O(n)
solution is possible.
There are also possible optimizations that could be applied to this algorithm, such as skipping over any nodes that were contained in a previously evaluated subtree. Because the tree-walk is breadth-first we know than any node that was part of some prior subtree cannot ever be the root of a larger subtree. This could significantly improve the performance of the algorithm in certain cases, but the worst-case running time (two trees with no common subtrees) would still be O(n log m)
.
Just hash the children and key of each node and look for duplicates. This would give a linear expected time algorithm. For example, see the following pseudocode, which assumes that there are no hash collisions (dealing with collisions would be straightforward):
ret = -1
// T is a tree node, H is a hash set, and first is a boolean flag
hashTree(T, H, first):
if (T is null):
return 0 // leaf case
h = hash(hashTree(T.left, H, first), hashTree(T.right, H, first), T.key)
if (first):
// store hashes of T1's nodes in the set H
H.insert(h)
else:
// check for hashes of T2's nodes in the set H containing T1's nodes
if H.contains(h):
ret = max(ret, size(T)) // size is recursive and memoized to get O(n) total time
return h
H = {}
hashTree(T1, H, true)
hashTree(T2, H, false)
return ret
Note that this is assuming the standard definition of a subtree of a BST, namely that a subtree consists of a node and all of its descendants.