On the documentation page for Equal
we read that
Approximate numbers with machine precision or higher are considered equal if they d
Thanks to recent post on the official newsgroup by Oleksandr Rasputinov, now I have learned two undocumented functions which control the tolerance of Equal
and SameQ
: $EqualTolerance
and $SameQTolerance
. In Mathematica version 5 and earlier these functions live in the Experimental`
context and are well documented: $EqualTolerance, $SameQTolerance. Starting from version 6, they are moved to the Internal` context and become undocumented but still work and even have built-in diagnostic messages which appear when one try to assign them illegal values:
In[1]:= Internal`$SameQTolerance = a
During evaluation of In[2]:= Internal`$SameQTolerance::tolset:
Cannot set Internal`$SameQTolerance to a; value must be a real
number or +/- Infinity.
Out[1]= a
Citing Oleksandr Rasputinov:
Internal`$EqualTolerance ... takes a machine real value indicating the number of decimal digits' tolerance that should be applied, i.e. Log[2]/Log[10] times the number of least significant bits one wishes to ignore.
In this way, setting Internal`$EqualTolerance
to zero will force Equal
to consider numbers equal only when they are identical in all binary digits (not considering out-of-Precision
digits):
In[2]:= Block[{Internal`$EqualTolerance = 0},
1.0000000000000021 == 1.0000000000000022]
Out[2]= False
In[5]:= Block[{Internal`$EqualTolerance = 0},
1.00000000000000002 == 1.000000000000000029]
Block[{Internal`$EqualTolerance = 0},
1.000000000000000020 == 1.000000000000000029]
Out[5]= True
Out[6]= False
Note the following case:
In[3]:= Block[{Internal`$EqualTolerance = 0},
1.0000000000000020 == 1.0000000000000021]
RealDigits[1.0000000000000020, 2] === RealDigits[1.0000000000000021, 2]
Out[3]= True
Out[4]= True
In this case both numbers have MachinePrecision
which effectively is
In[5]:= $MachinePrecision
Out[5]= 15.9546
(53*Log[10, 2]
). With such precision these numbers are identical in all binary digits:
In[6]:= RealDigits[1.0000000000000020` $MachinePrecision, 2] ===
RealDigits[1.0000000000000021` $MachinePrecision, 2]
Out[6]= True
Increasing precision to 16 makes them different arbitrary-precision numbers:
In[7]:= RealDigits[1.0000000000000020`16, 2] ===
RealDigits[1.0000000000000021`16, 2]
Out[7]= False
In[8]:= Row@First@RealDigits[1.0000000000000020`16,2]
Row@First@RealDigits[1.0000000000000021`16,2]
Out[9]= 100000000000000000000000000000000000000000000000010010
Out[10]= 100000000000000000000000000000000000000000000000010011
But unfortunately Equal
still fails to distinguish them:
In[11]:= Block[{Internal`$EqualTolerance = 0},
{1.00000000000000002`16 == 1.000000000000000021`16,
1.00000000000000002`17 == 1.000000000000000021`17,
1.00000000000000002`18 == 1.000000000000000021`18}]
Out[11]= {True, True, False}
There is an infinite number of such cases:
In[12]:= Block[{Internal`$EqualTolerance = 0},
Cases[Table[a = SetPrecision[1., n];
b = a + 10^-n; {n, a == b, RealDigits[a, 2] === RealDigits[b, 2],
Order[a, b] == 0}, {n, 15, 300}], {_, True, False, _}]] // Length
Out[12]= 192
Interestingly, sometimes RealDigits
returns identical digits while Order
shows that internal representations of expressions are not identical:
In[13]:= Block[{Internal`$EqualTolerance = 0},
Cases[Table[a = SetPrecision[1., n];
b = a + 10^-n; {n, a == b, RealDigits[a, 2] === RealDigits[b, 2],
Order[a, b] == 0}, {n, 15, 300}], {_, _, True, False}]] // Length
Out[13]= 64
But it seems that opposite situation newer happens:
In[14]:=
Block[{Internal`$EqualTolerance = 0},
Cases[Table[a = SetPrecision[1., n];
b = a + 10^-n; {n, a == b, RealDigits[a, 2] === RealDigits[b, 2],
Order[a, b] == 0}, {n, 15, 3000}], {_, _, False, True}]] // Length
Out[14]= 0