How to write a matrix matrix product that can compete with Eigen?

前端 未结 3 957
伪装坚强ぢ
伪装坚强ぢ 2020-12-24 03:31

Below is the C++ implementation comparing the time taken by Eigen and For Loop to perform matrix-matrix products. The For loop has been optimised to minimise cache misses. T

相关标签:
3条回答
  • 2020-12-24 04:21

    There are two simple optimizations that I may advice.

    1) Vectorize it. It would be better if you vectorize it with inline assembly or write assembly proc, but you may use compiler intrinsics as well. You can even let compiler vectorize the loop, but it is sometimes difficult to write proper loop to be vectorized by compiler.

    2) Make it parallel. Try using OpenMP.

    0 讨论(0)
  • 2020-12-24 04:34

    There is no need to mystifying how a high performance implementation of the matrix-matrix product can be achieved. In fact we need more people knowing about it, in order to face future challenges in high-performance computing. In order to get into this topic reading BLIS: A Framework for Rapidly Instantiating BLAS Functionality is a good starting point.

    So in order to demystify and to answer the question (How to write a matrix matrix product that can compete with Eigen) I extended the code posted by ggael to a total of 400 lines. I just tested it on an AVX machine (Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz). Here some results:

    g++-5.3 -O3 -DNDEBUG -std=c++11 -mavx -m64 -I ../eigen.3.2.8/ gemm.cc -lrt
    
    lehn@heim:~/work/test_eigen$ ./a.out 500
    Time taken by Eigen is: 0.0190425
    Time taken by for-loop is: 0.0121688
    
    lehn@heim:~/work/test_eigen$ ./a.out 1000
    Time taken by Eigen is: 0.147991
    Time taken by for-loop is: 0.0959097
    
    lehn@heim:~/work/test_eigen$ ./a.out 1500
    Time taken by Eigen is: 0.492858
    Time taken by for-loop is: 0.322442
    
    lehn@heim:~/work/test_eigen$ ./a.out 5000
    Time taken by Eigen is: 18.3666
    Time taken by for-loop is: 12.1023
    

    If you have FMA you can compile with

    g++-5.3 -O3 -DNDEBUG -std=c++11 -mfma -m64 -I ../eigen.3.2.8/ -DHAVE_FMA gemm.cc -lrt
    

    If you also want multithreading with openMP also compile with -fopenmp

    Here the complete code based on the ideas of the BLIS paper. It is self-contained except that it needs the complete Eigen source files as ggael already noted:

    #include<iostream>
    #include<Eigen/Dense>
    #include<bench/BenchTimer.h>
    #if defined(_OPENMP)
    #include <omp.h>
    #endif
    //-- malloc with alignment --------------------------------------------------------
    void *
    malloc_(std::size_t alignment, std::size_t size)
    {
        alignment = std::max(alignment, alignof(void *));
        size     += alignment;
    
        void *ptr  = std::malloc(size);
        void *ptr2 = (void *)(((uintptr_t)ptr + alignment) & ~(alignment-1));
        void **vp  = (void**) ptr2 - 1;
        *vp        = ptr;
        return ptr2;
    }
    
    void
    free_(void *ptr)
    {
        std::free(*((void**)ptr-1));
    }
    
    //-- Config --------------------------------------------------------------------
    
    // SIMD-Register width in bits
    // SSE:         128
    // AVX/FMA:     256
    // AVX-512:     512
    #ifndef SIMD_REGISTER_WIDTH
    #define SIMD_REGISTER_WIDTH 256
    #endif
    
    #ifdef HAVE_FMA
    
    #   ifndef BS_D_MR
    #   define BS_D_MR 4
    #   endif
    
    #   ifndef BS_D_NR
    #   define BS_D_NR 12
    #   endif
    
    #   ifndef BS_D_MC
    #   define BS_D_MC 256
    #   endif
    
    #   ifndef BS_D_KC
    #   define BS_D_KC 512
    #   endif
    
    #   ifndef BS_D_NC
    #   define BS_D_NC 4092
    #   endif
    
    #endif
    
    
    
    #ifndef BS_D_MR
    #define BS_D_MR 4
    #endif
    
    #ifndef BS_D_NR
    #define BS_D_NR 8
    #endif
    
    #ifndef BS_D_MC
    #define BS_D_MC 256
    #endif
    
    #ifndef BS_D_KC
    #define BS_D_KC 256
    #endif
    
    #ifndef BS_D_NC
    #define BS_D_NC 4096
    #endif
    
    template <typename T>
    struct BlockSize
    {
        static constexpr int MC = 64;
        static constexpr int KC = 64;
        static constexpr int NC = 256;
        static constexpr int MR = 8;
        static constexpr int NR = 8;
    
        static constexpr int rwidth = 0;
        static constexpr int align  = alignof(T);
        static constexpr int vlen   = 0;
    
        static_assert(MC>0 && KC>0 && NC>0 && MR>0 && NR>0, "Invalid block size.");
        static_assert(MC % MR == 0, "MC must be a multiple of MR.");
        static_assert(NC % NR == 0, "NC must be a multiple of NR.");
    };
    
    
    template <>
    struct BlockSize<double>
    {
        static constexpr int MC     = BS_D_MC;
        static constexpr int KC     = BS_D_KC;
        static constexpr int NC     = BS_D_NC;
        static constexpr int MR     = BS_D_MR;
        static constexpr int NR     = BS_D_NR;
    
        static constexpr int rwidth = SIMD_REGISTER_WIDTH;
        static constexpr int align  = rwidth / 8;
        static constexpr int vlen   = rwidth / (8*sizeof(double));
    
        static_assert(MC>0 && KC>0 && NC>0 && MR>0 && NR>0, "Invalid block size.");
        static_assert(MC % MR == 0, "MC must be a multiple of MR.");
        static_assert(NC % NR == 0, "NC must be a multiple of NR.");
        static_assert(rwidth % sizeof(double) == 0, "SIMD register width not sane.");
    };
    
    //-- aux routines --------------------------------------------------------------
    template <typename Index, typename Alpha, typename TX, typename TY>
    void
    geaxpy(Index m, Index n,
           const Alpha &alpha,
           const TX *X, Index incRowX, Index incColX,
           TY       *Y, Index incRowY, Index incColY)
    {
        for (Index j=0; j<n; ++j) {
            for (Index i=0; i<m; ++i) {
                Y[i*incRowY+j*incColY] += alpha*X[i*incRowX+j*incColX];
            }
        }
    }
    
    template <typename Index, typename Alpha, typename TX>
    void
    gescal(Index m, Index n,
           const Alpha &alpha,
           TX *X, Index incRowX, Index incColX)
    {
        if (alpha!=Alpha(0)) {
            for (Index j=0; j<n; ++j) {
                for (Index i=0; i<m; ++i) {
                    X[i*incRowX+j*incColX] *= alpha;
                }
            }
        } else {
            for (Index j=0; j<n; ++j) {
                for (Index i=0; i<m; ++i) {
                    X[i*incRowX+j*incColX] = Alpha(0);
                }
            }
        }
    }
    
    
    //-- Micro Kernel --------------------------------------------------------------
    template <typename Index, typename T>
    typename std::enable_if<BlockSize<T>::vlen != 0,
             void>::type
    ugemm(Index kc, T alpha, const T *A, const T *B, T beta,
          T *C, Index incRowC, Index incColC)
    {
        typedef T vx __attribute__((vector_size (BlockSize<T>::rwidth/8)));
    
        static constexpr Index vlen = BlockSize<T>::vlen;
        static constexpr Index MR   = BlockSize<T>::MR;
        static constexpr Index NR   = BlockSize<T>::NR/vlen;
    
        A = (const T*) __builtin_assume_aligned (A, BlockSize<T>::align);
        B = (const T*) __builtin_assume_aligned (B, BlockSize<T>::align);
    
        vx P[MR*NR] = {};
    
        for (Index l=0; l<kc; ++l) {
            const vx *b = (const vx *)B;
            for (Index i=0; i<MR; ++i) {
                for (Index j=0; j<NR; ++j) {
                    P[i*NR+j] += A[i]*b[j];
                }
            }
            A += MR;
            B += vlen*NR;
        }
    
        if (alpha!=T(1)) {
            for (Index i=0; i<MR; ++i) {
                for (Index j=0; j<NR; ++j) {
                    P[i*NR+j] *= alpha;
                }
            }
        }
    
        if (beta!=T(0)) {
            for (Index i=0; i<MR; ++i) {
                for (Index j=0; j<NR; ++j) {
                    const T *p = (const T *) &P[i*NR+j];
                    for (Index j1=0; j1<vlen; ++j1) {
                        C[i*incRowC+(j*vlen+j1)*incColC] *= beta;
                        C[i*incRowC+(j*vlen+j1)*incColC] += p[j1];
                    }
                }
            }
        } else {
            for (Index i=0; i<MR; ++i) {
                for (Index j=0; j<NR; ++j) {
                    const T *p = (const T *) &P[i*NR+j];
                    for (Index j1=0; j1<vlen; ++j1) {
                        C[i*incRowC+(j*vlen+j1)*incColC] = p[j1];
                    }
                }
            }
        }
    }
    
    //-- Macro Kernel --------------------------------------------------------------
    template <typename Index, typename T, typename Beta, typename TC>
    void
    mgemm(Index mc, Index nc, Index kc,
          T alpha,
          const T *A, const T *B,
          Beta beta,
          TC *C, Index incRowC, Index incColC)
    {
        const Index MR = BlockSize<T>::MR;
        const Index NR = BlockSize<T>::NR;
        const Index mp  = (mc+MR-1) / MR;
        const Index np  = (nc+NR-1) / NR;
        const Index mr_ = mc % MR;
        const Index nr_ = nc % NR;
    
        T C_[MR*NR];
    
        #pragma omp parallel for
        for (Index j=0; j<np; ++j) {
            const Index nr = (j!=np-1 || nr_==0) ? NR : nr_;
    
            for (Index i=0; i<mp; ++i) {
                const Index mr = (i!=mp-1 || mr_==0) ? MR : mr_;
    
                if (mr==MR && nr==NR) {
                    ugemm(kc, alpha,
                          &A[i*kc*MR], &B[j*kc*NR],
                          beta,
                          &C[i*MR*incRowC+j*NR*incColC],
                          incRowC, incColC);
                } else {
                    ugemm(kc, alpha,
                          &A[i*kc*MR], &B[j*kc*NR],
                          T(0),
                          C_, Index(1), MR);
                    gescal(mr, nr, beta,
                           &C[i*MR*incRowC+j*NR*incColC],
                           incRowC, incColC);
                    geaxpy(mr, nr, T(1), C_, Index(1), MR,
                           &C[i*MR*incRowC+j*NR*incColC],
                           incRowC, incColC);
                }
            }
        }
    }
    //-- Packing blocks ------------------------------------------------------------
    template <typename Index, typename TA, typename T>
    void
    pack_A(Index mc, Index kc,
           const TA *A, Index incRowA, Index incColA,
           T *p)
    {
        Index MR = BlockSize<T>::MR;
        Index mp = (mc+MR-1) / MR;
    
        for (Index j=0; j<kc; ++j) {
            for (Index l=0; l<mp; ++l) {
                for (Index i0=0; i0<MR; ++i0) {
                    Index i  = l*MR + i0;
                    Index nu = l*MR*kc + j*MR + i0;
                    p[nu]   = (i<mc) ? A[i*incRowA+j*incColA]
                                     : T(0);
                }
            }
        }
    }
    
    template <typename Index, typename TB, typename T>
    void
    pack_B(Index kc, Index nc,
           const TB *B, Index incRowB, Index incColB,
           T *p)
    {
        Index NR = BlockSize<T>::NR;
        Index np = (nc+NR-1) / NR;
    
        for (Index l=0; l<np; ++l) {
            for (Index j0=0; j0<NR; ++j0) {
                for (Index i=0; i<kc; ++i) {
                    Index j  = l*NR+j0;
                    Index nu = l*NR*kc + i*NR + j0;
                    p[nu]   = (j<nc) ? B[i*incRowB+j*incColB]
                                     : T(0);
                }
            }
        }
    }
    //-- Frame routine -------------------------------------------------------------
    template <typename Index, typename Alpha,
             typename TA, typename TB,
             typename Beta,
             typename TC>
    void
    gemm(Index m, Index n, Index k,
         Alpha alpha,
         const TA *A, Index incRowA, Index incColA,
         const TB *B, Index incRowB, Index incColB,
         Beta beta,
         TC *C, Index incRowC, Index incColC)
    {
        typedef typename std::common_type<Alpha, TA, TB>::type  T;
    
        const Index MC = BlockSize<T>::MC;
        const Index NC = BlockSize<T>::NC;
        const Index MR = BlockSize<T>::MR;
        const Index NR = BlockSize<T>::NR;
    
        const Index KC = BlockSize<T>::KC;
        const Index mb = (m+MC-1) / MC;
        const Index nb = (n+NC-1) / NC;
        const Index kb = (k+KC-1) / KC;
        const Index mc_ = m % MC;
        const Index nc_ = n % NC;
        const Index kc_ = k % KC;
    
        T *A_ = (T*) malloc_(BlockSize<T>::align, sizeof(T)*(MC*KC+MR));
        T *B_ = (T*) malloc_(BlockSize<T>::align, sizeof(T)*(KC*NC+NR));
    
        if (alpha==Alpha(0) || k==0) {
            gescal(m, n, beta, C, incRowC, incColC);
            return;
        }
    
        for (Index j=0; j<nb; ++j) {
            Index nc = (j!=nb-1 || nc_==0) ? NC : nc_;
    
            for (Index l=0; l<kb; ++l) {
                Index   kc  = (l!=kb-1 || kc_==0) ? KC : kc_;
                Beta beta_  = (l==0) ? beta : Beta(1);
    
                pack_B(kc, nc,
                       &B[l*KC*incRowB+j*NC*incColB],
                       incRowB, incColB,
                       B_);
    
                for (Index i=0; i<mb; ++i) {
                    Index mc = (i!=mb-1 || mc_==0) ? MC : mc_;
    
                    pack_A(mc, kc,
                           &A[i*MC*incRowA+l*KC*incColA],
                           incRowA, incColA,
                           A_);
    
                    mgemm(mc, nc, kc,
                          T(alpha), A_, B_, beta_,
                          &C[i*MC*incRowC+j*NC*incColC],
                          incRowC, incColC);
                }
            }
        }
        free_(A_);
        free_(B_);
    }
    
    //------------------------------------------------------------------------------
    
    void myprod(double *c, const double* a, const double* b, int N) {
        gemm(N, N, N, 1.0, a, 1, N, b, 1, N, 0.0, c, 1, N);
    }
    
    int main(int argc, char* argv[]) {
      int N = atoi(argv[1]);
      int tries = 4;
      int rep = std::max<int>(1,10000000/N/N/N);
    
      Eigen::MatrixXd a_E = Eigen::MatrixXd::Random(N,N);
      Eigen::MatrixXd b_E = Eigen::MatrixXd::Random(N,N);
      Eigen::MatrixXd c_E(N,N);
    
      Eigen::BenchTimer t1, t2;
    
      BENCH(t1, tries, rep, c_E.noalias() = a_E*b_E );
      BENCH(t2, tries, rep, myprod(c_E.data(), a_E.data(), b_E.data(), N));
    
      std::cout << "Time taken by Eigen is: " << t1.best() << "\n";
      std::cout << "Time taken by for-loop is: " << t2.best() << "\n\n";
    }
    
    0 讨论(0)
  • 2020-12-24 04:35

    Your code is already well vectorized by the compiler. The key for higher performance is hierarchical blocking to optimize the usage of registers, and of the different level of caches. Partial loop unrolling is also crucial to improve instruction pipelining. Reaching the performance of Eigen's product require a lot of effort and tuning.

    It should also be noted that your benchmark is slightly biased and not fully reliable. Here is a more reliable version (you need complete Eigen's sources to get bench/BenchTimer.h):

    #include<iostream>
    #include<Eigen/Dense>
    #include<bench/BenchTimer.h>
    
    void myprod(double *c, const double* a, const double* b, int N) {
      int count = 0;
      int count1, count2;
      for (int j=0; j<N; ++j) {
          count1  =   j*N;
          for (int k=0; k<N; ++k) {
              c[count]    =   a[count1]*b[k];
              ++count;
          }
      }
    
      for (int j=0; j<N; ++j) {
          count2  =   N;
          for (int l=1; l<N; ++l) {
              count   =   j*N;
              count1  =   count+l;
              for (int k=0; k<N; ++k) {
                  c[count]+=a[count1]*b[count2];
                  ++count;
                  ++count2;
              }
          }
      }
    }
    
    int main(int argc, char* argv[]) {
      int N = atoi(argv[1]);
      int tries = 4;
      int rep = std::max<int>(1,10000000/N/N/N);
    
      Eigen::MatrixXd a_E = Eigen::MatrixXd::Random(N,N);
      Eigen::MatrixXd b_E = Eigen::MatrixXd::Random(N,N);
      Eigen::MatrixXd c_E(N,N);
    
      Eigen::BenchTimer t1, t2;
    
      BENCH(t1, tries, rep, c_E.noalias() = a_E*b_E );
      BENCH(t2, tries, rep, myprod(c_E.data(), a_E.data(), b_E.data(), N));
    
      std::cout << "\nTime taken by Eigen is: " << t1.best() << "\n";
      std::cout << "\nTime taken by for-loop is: " << t2.best() << "\n";
    }
    

    Compiling with 3.3-beta1 and FMA enabled (-mfma), then the gap becomes much larger, almost one order of magnitude for N=2000.

    0 讨论(0)
提交回复
热议问题