in one of my scripts I\'m selecting several columns of a dataframe, by a list of the column names. The following code works:
data = df[lst]
Few other ways, and list comprehension is much faster
In [1357]: df[df.columns & lst]
Out[1357]:
A B
0 1 4
1 2 5
2 3 6
In [1358]: df[[c for c in df.columns if c in lst]]
Out[1358]:
A B
0 1 4
1 2 5
2 3 6
Timings
In [1360]: %timeit [c for c in df.columns if c in lst]
100000 loops, best of 3: 2.54 µs per loop
In [1359]: %timeit df.columns & lst
1000 loops, best of 3: 231 µs per loop
In [1362]: %timeit df.columns.intersection(lst)
1000 loops, best of 3: 236 µs per loop
In [1363]: %timeit np.intersect1d(df.columns, lst)
10000 loops, best of 3: 26.6 µs per loop
Details
In [1365]: df
Out[1365]:
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
In [1366]: lst
Out[1366]: ['A', 'R', 'B']
I think you need Index.intersection:
df = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
print (df)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
lst = ['A','R','B']
print (df.columns.intersection(lst))
Index(['A', 'B'], dtype='object')
data = df[df.columns.intersection(lst)]
print (data)
A B
0 1 4
1 2 5
2 3 6
Another solution with numpy.intersect1d:
data = df[np.intersect1d(df.columns, lst)]
print (data)
A B
0 1 4
1 2 5
2 3 6
please try this:
syntax : Dataframe[[List of Columns]]
for example : df[['a','b']]
a
Out[5]:
a b c
0 1 2 3
1 12 3 44
X is the list of req columns to slice
x = ['a','b']
this would give you the req slice:
a[x]
Out[7]:
a b
0 1 2
1 12 3
Performance:
%timeit a[x]
333 µs ± 9.27 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Use *
with list
data = df[[*lst]]
It will give the desired result.