I have a mer object that has fixed and random effects. How do I extract the variance estimates for the random effects? Here is a simplified version of my question.
lmer
returns an S4 object, so this should work:
remat <- summary(study)@REmat
print(remat, quote=FALSE)
Which prints:
Groups Name Variance Std.Dev.
Subject (Intercept) 1378.18 37.124
Residual 960.46 30.991
...In general, you can look at the source of the print
and summary
methods for "mer" objects:
class(study) # mer
selectMethod("print", "mer")
selectMethod("summary", "mer")
Try
attributes(study)
As an example:
> women
height weight
1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
7 64 132
8 65 135
9 66 139
10 67 142
11 68 146
12 69 150
13 70 154
14 71 159
15 72 164
> lm1 <- lm(height ~ weight, data=women)
> attributes(lm1)
$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
$class
[1] "lm"
> lm1$coefficients
(Intercept) weight
25.7234557 0.2872492
> lm1$coefficients[[1]]
[1] 25.72346
> lm1$coefficients[[2]]
[1] 0.2872492
The end.
> attributes(summary(study))$REmat
Groups Name Variance Std.Dev.
"Subject" "(Intercept)" "1378.18" "37.124"
"Residual" "" " 960.46" "30.991"
This answer is heavily based on that on @Ben Bolker's, but if people are new to this and want the values themselves, instead of just a printout of the values (as OP seems to have wanted), then you can extract the values as follows:
Convert the VarCorr
object to a data frame.
re_dat = as.data.frame(VarCorr(study))
Then access each individual value:
int_vcov = re_dat[1,'vcov']
resid_vcov = re_dat[2,'vcov']
With this method (specifying rows and columns in the date frame you created) you can access whichever values you'd like.
Some of the other answers are workable, but I claim that the best answer is to use the accessor method that is designed for this -- VarCorr
(this is the same as in lme4
's predecessor, the nlme
package).
UPDATE in recent versions of lme4
(version 1.1-7, but everything below is probably applicable to versions >= 1.0), VarCorr
is more flexible than before, and should do everything you want without ever resorting to fishing around inside the fitted model object.
library(lme4)
study <- lmer(Reaction ~ Days + (1|Subject), data = sleepstudy)
VarCorr(study)
## Groups Name Std.Dev.
## Subject (Intercept) 37.124
## Residual 30.991
By default VarCorr()
prints standard deviations, but you can get variances instead if you prefer:
print(VarCorr(study),comp="Variance")
## Groups Name Variance
## Subject (Intercept) 1378.18
## Residual 960.46
(comp=c("Variance","Std.Dev.")
will print both).
For more flexibility, you can use the as.data.frame
method to convert the VarCorr
object, which gives the grouping variable, effect variable(s), and the variance/covariance or standard deviation/correlations:
as.data.frame(VarCorr(study))
## grp var1 var2 vcov sdcor
## 1 Subject (Intercept) <NA> 1378.1785 37.12383
## 2 Residual <NA> <NA> 960.4566 30.99123
Finally, the raw form of the VarCorr
object (which you probably shouldn't mess with you if you don't have to) is a list of variance-covariance matrices with additional (redundant) information encoding the standard deviations and correlations, as well as attributes ("sc"
) giving the residual standard deviation and specifying whether the model has an estimated scale parameter ("useSc"
).
unclass(VarCorr(fm1))
## $Subject
## (Intercept) Days
## (Intercept) 612.089748 9.604335
## Days 9.604335 35.071662
## attr(,"stddev")
## (Intercept) Days
## 24.740448 5.922133
## attr(,"correlation")
## (Intercept) Days
## (Intercept) 1.00000000 0.06555134
## Days 0.06555134 1.00000000
##
## attr(,"sc")
## [1] 25.59182
## attr(,"useSc")
## [1] TRUE
##
This package is useful for things like this (https://easystats.github.io/insight/reference/index.html)
library("insight")
get_variance_random(study) #Where study is your fit mixed model