If the pre-order traversal of a binary search tree is 6, 2, 1, 4, 3, 7, 10, 9, 11, how to get the post-order traversal?
I know this is old but there is a better solution.
We don't have to reconstruct a BST to get the post-order from the pre-order.
Here is a simple python code that does it recursively:
import itertools
def postorder(preorder):
if not preorder:
return []
else:
root = preorder[0]
left = list(itertools.takewhile(lambda x: x < root, preorder[1:]))
right = preorder[len(left) + 1:]
return postorder(left) + postorder(right) + [root]
if __name__ == '__main__':
preorder = [20, 10, 6, 15, 30, 35]
print(postorder(preorder))
Output:
[6, 15, 10, 35, 30, 20]
Explanation:
We know that we are in pre-order. This means that the root is at the index 0
of the list of the values in the BST. And we know that the elements following the root are:
root
, which belong to the left subtree of the rootroot
, which belong to the right subtree of the rootWe then just call recursively the function on both subtrees (which still are in pre-order) and then chain left + right + root
(which is the post-order).
Here is full code )
class Tree:
def __init__(self, data = None):
self.left = None
self.right = None
self.data = data
def add(self, data):
if self.data is None:
self.data = data
else:
if data < self.data:
if self.left is None:
self.left = Tree(data)
else:
self.left.add(data)
elif data > self.data:
if self.right is None:
self.right = Tree(data)
else:
self.right.add(data)
def inOrder(self):
if self.data:
if self.left is not None:
self.left.inOrder()
print(self.data)
if self.right is not None:
self.right.inOrder()
def postOrder(self):
if self.data:
if self.left is not None:
self.left.postOrder()
if self.right is not None:
self.right.postOrder()
print(self.data)
def preOrder(self):
if self.data:
print(self.data)
if self.left is not None:
self.left.preOrder()
if self.right is not None:
self.right.preOrder()
arr = [6, 2, 1, 4, 3, 7, 10, 9, 11]
root = Tree()
for i in range(len(arr)):
root.add(arr[i])
print(root.inOrder())
This is the code of preorder to postorder traversal in python. I am constructing a tree so you can find any type of traversal
def postorder(root):
if root==None:
return
postorder(root.left)
print(root.data,end=" ")
postorder(root.right)
def preordertoposorder(a,n):
root=Node(a[0])
top=Node(0)
temp=Node(0)
temp=None
stack=[]
stack.append(root)
for i in range(1,len(a)):
while len(stack)!=0 and a[i]>stack[-1].data:
temp=stack.pop()
if temp!=None:
temp.right=Node(a[i])
stack.append(temp.right)
else:
stack[-1].left=Node(a[i])
stack.append(stack[-1].left)
return root
class Node:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
a=[40,30,35,80,100]
n=5
root=preordertoposorder(a,n)
postorder(root)
# print(root.data)
# print(root.left.data)
# print(root.right.data)
# print(root.left.right.data)
# print(root.right.right.data)
Based on Ondrej Tucny's answer. Valid for BST only
example:
20
/ \
10 30
/\ \
6 15 35
Preorder = 20 10 6 15 30 35
Post = 6 15 10 35 30 20
For a BST, In Preorder traversal; first element of array is 20. This is the root of our tree. All numbers in array which are lesser than 20 form its left subtree and greater numbers form right subtree.
//N = number of nodes in BST (size of traversal array)
int post[N] = {0};
int i =0;
void PretoPost(int pre[],int l,int r){
if(l==r){post[i++] = pre[l]; return;}
//pre[l] is root
//Divide array in lesser numbers and greater numbers and then call this function on them recursively
for(int j=l+1;j<=r;j++)
if(pre[j]>pre[l])
break;
PretoPost(a,l+1,j-1); // add left node
PretoPost(a,j,r); //add right node
//root should go in the end
post[i++] = pre[l];
return;
}
Please correct me if there is any mistake.
As we Know preOrder follow parent, left, right series.
In order to construct tree we need to follow few basic steps-:
your question consist of series 6, 2,1,4,3,7,10,9,11
points-:
2.Find the number which is greater than 6 so in this series 7 is first greater number in this series so right node will be starting from here and left to this number(7) is your left subtrees.
6
/ \
2 7
/ \ \
1 4 10
/ / \
3 9 11
3.same way follow the basic rule of BST i.e left,root,right
the series of post order will be L, R, N i.e. 1,3,4,2,9,11,10,7,6