How to turn a boolean array into index array in numpy

前端 未结 4 950
执念已碎
执念已碎 2020-12-23 19:07

Is there an efficient Numpy mechanism to retrieve the integer indexes of locations in an array based on a condition is true as opposed to the Boolean mask array?

For

相关标签:
4条回答
  • 2020-12-23 19:24
    np.arange(100,1,-1)
    array([100,  99,  98,  97,  96,  95,  94,  93,  92,  91,  90,  89,  88,
            87,  86,  85,  84,  83,  82,  81,  80,  79,  78,  77,  76,  75,
            74,  73,  72,  71,  70,  69,  68,  67,  66,  65,  64,  63,  62,
            61,  60,  59,  58,  57,  56,  55,  54,  53,  52,  51,  50,  49,
            48,  47,  46,  45,  44,  43,  42,  41,  40,  39,  38,  37,  36,
            35,  34,  33,  32,  31,  30,  29,  28,  27,  26,  25,  24,  23,
            22,  21,  20,  19,  18,  17,  16,  15,  14,  13,  12,  11,  10,
             9,   8,   7,   6,   5,   4,   3,   2])
    
    x=np.arange(100,1,-1)
    
    np.where(x&(x-1) == 0)
    (array([36, 68, 84, 92, 96, 98]),)
    

    Now rephrase this like :

    x[x&(x-1) == 0]
    
    0 讨论(0)
  • 2020-12-23 19:31

    If you prefer the indexer way, you can convert your boolean list to numpy array:

    print x[nd.array(mask)]
    
    0 讨论(0)
  • 2020-12-23 19:32

    Another option:

    In [13]: numpy.where(mask)
    Out[13]: (array([36, 68, 84, 92, 96, 98]),)
    

    which is the same thing as numpy.where(mask==True).

    0 讨论(0)
  • 2020-12-23 19:35

    You should be able to use numpy.nonzero() to find this information.

    0 讨论(0)
提交回复
热议问题