Finding lag at which cross correlation is maximum ccf( )

后端 未结 4 2023
野的像风
野的像风 2020-12-23 17:55

I have 2 time series and I am using ccf to find the cross correlation between them. ccf(ts1, ts2) lists the cross-correlations for all time lags. H

相关标签:
4条回答
  • 2020-12-23 18:40

    I thought I'd redo the above function but have it find the absolute max correlation that returns the original correlation (positive or negative). I also maxed out (nearly) the number of lags.

    Find_Abs_Max_CCF<- function(a,b)
    {
     d <- ccf(a, b, plot = FALSE, lag.max = length(a)-5)
     cor = d$acf[,,1]
     abscor = abs(d$acf[,,1])
     lag = d$lag[,,1]
     res = data.frame(cor,lag)
     absres = data.frame(abscor,lag)
     absres_max = res[which.max(absres$abscor),]
     return(absres_max)
    }
    
    0 讨论(0)
  • 2020-12-23 18:46

    Because 3 is more than 4, I also had a stab at modifying this function, this time by implementing an idea from here:

    ccfmax <- function(a, b, e=0)
    {
     d <- ccf(a, b, plot = FALSE, lag.max = length(a)/2)
     cor = d$acf[,,1]
     abscor = abs(d$acf[,,1])
     lag = d$lag[,,1]
     res = data.frame(cor, lag)
     absres = data.frame(abscor, lag)
     maxcor = max(absres$abscor)
     absres_max = res[which(absres$abscor >= maxcor-maxcor*e &
                            absres$abscor <= maxcor+maxcor*e),]
     return(absres_max)
    }
    

    Essentially an "error" term is added, so that if there are several values close to the maximum, they all get returned, eg:

    ayy <- jitter(cos((1:360)/5), 100)
    bee <- jitter(sin((1:360)/5), 100)
    
    ccfmax(ayy, bee, 0.02)
               cor lag
    348  0.9778319  -8
    349  0.9670333  -7
    363 -0.9650827   7
    364 -0.9763180   8
    

    If no value for e is given it is taken to be zero, and the function behaves just like the one nvogen posted.

    0 讨论(0)
  • 2020-12-23 18:47

    I've modified the original solution as well, in order to loop over the function and output the values corresponding to a character vector of indices (x):

    abs.max.ccf <- function(x,a,b) {
      d <- ccf(a, b, plot=FALSE, lag.max=length(a)-5)
      cor <- d$acf[,,1]
      abscor <- abs(d$acf[,,1])
      lag <- d$lag[,,1]
      abs.cor.max <- abscor[which.max(abscor)]
      abs.cor.max.lag <- lag[which.max(abscor)]
      return(c(x, abs.cor.max, abs.cor.max.lag))
    }
    

    I removed the data.frame part within the function, as it is unnecessarily slow. To loop over each column in a data.frame and return the results to a new data.frame, I use this method:

    max.ccf <- lapply(colnames(df), function(x) unlist(abs.max.ccf(x, df$y, df[x])))
    max.ccf <- data.frame(do.call(rbind, max.ccf))
    colnames(max.ccf) <- c('Index','Cor','Lag')
    
    0 讨论(0)
  • 2020-12-23 18:50

    Posting the answer http://r.789695.n4.nabble.com/ccf-function-td2288257.html

    Find_Max_CCF<- function(a,b)
    {
     d <- ccf(a, b, plot = FALSE)
     cor = d$acf[,,1]
     lag = d$lag[,,1]
     res = data.frame(cor,lag)
     res_max = res[which.max(res$cor),]
     return(res_max)
    } 
    
    0 讨论(0)
提交回复
热议问题