I have a the mean, std dev and n of sample 1 and sample 2 - samples are taken from the sample population, but measured by different labs.
n is different for sample 1
If you have the original data as arrays a
and b
, you can use scipy.stats.ttest_ind with the argument equal_var=False
:
t, p = ttest_ind(a, b, equal_var=False)
If you have only the summary statistics of the two data sets, you can calculate the t value using scipy.stats.ttest_ind_from_stats (added to scipy in version 0.16) or from the formula (http://en.wikipedia.org/wiki/Welch%27s_t_test).
The following script shows the possibilities.
from __future__ import print_function
import numpy as np
from scipy.stats import ttest_ind, ttest_ind_from_stats
from scipy.special import stdtr
np.random.seed(1)
# Create sample data.
a = np.random.randn(40)
b = 4*np.random.randn(50)
# Use scipy.stats.ttest_ind.
t, p = ttest_ind(a, b, equal_var=False)
print("ttest_ind: t = %g p = %g" % (t, p))
# Compute the descriptive statistics of a and b.
abar = a.mean()
avar = a.var(ddof=1)
na = a.size
adof = na - 1
bbar = b.mean()
bvar = b.var(ddof=1)
nb = b.size
bdof = nb - 1
# Use scipy.stats.ttest_ind_from_stats.
t2, p2 = ttest_ind_from_stats(abar, np.sqrt(avar), na,
bbar, np.sqrt(bvar), nb,
equal_var=False)
print("ttest_ind_from_stats: t = %g p = %g" % (t2, p2))
# Use the formulas directly.
tf = (abar - bbar) / np.sqrt(avar/na + bvar/nb)
dof = (avar/na + bvar/nb)**2 / (avar**2/(na**2*adof) + bvar**2/(nb**2*bdof))
pf = 2*stdtr(dof, -np.abs(tf))
print("formula: t = %g p = %g" % (tf, pf))
The output:
ttest_ind: t = -1.5827 p = 0.118873
ttest_ind_from_stats: t = -1.5827 p = 0.118873
formula: t = -1.5827 p = 0.118873
Using a recent version of Scipy 0.12.0, this functionality is built in (and does in fact operates on samples of different sizes). In scipy.stats
the ttest_ind function performs Welch’s t-test when the flag equal_var
is set to False
.
For example:
>>> import scipy.stats as stats
>>> sample1 = np.random.randn(10, 1)
>>> sample2 = 1 + np.random.randn(15, 1)
>>> t_stat, p_val = stats.ttest_ind(sample1, sample2, equal_var=False)
>>> t_stat
array([-3.94339083])
>>> p_val
array([ 0.00070813])