I was doing this course on algorithms from MIT. In the very first lecture the professor presents the following problem:-
A peak in a 2D array is a value such that al
left_side + central_column
right_side + central_column
Why this works:
For cases where the maximum element is in the central column - obvious. If it's not, we can step from that maximum to increasing elements and will definitely not cross the central row, so a peak will definitely exist in the corresponding half.
Why this is O(n):
step #3 takes less than or equal to max_dimension
iterations and max_dimension
at least halves on every two algorithm steps. This gives n+n/2+n/4+...
which is O(n)
. Important detail: we split by the maximum direction. For square arrays this means that split directions will be alternating. This is a difference from the last attempt in the PDF you linked to.
A note: I'm not sure if it exactly matches the algorithm in the code you gave, it may or may not be a different approach.
Here is the working Java code that implements @maxim1000 's algorithm. The following code finds a peak in the 2D array in linear time.
import java.util.*;
class Ideone{
public static void main (String[] args) throws java.lang.Exception{
new Ideone().run();
}
int N , M ;
void run(){
N = 1000;
M = 100;
// arr is a random NxM array
int[][] arr = randomArray();
long start = System.currentTimeMillis();
// for(int i=0; i<N; i++){ // TO print the array.
// System. out.println(Arrays.toString(arr[i]));
// }
System.out.println(findPeakLinearTime(arr));
long end = System.currentTimeMillis();
System.out.println("time taken : " + (end-start));
}
int findPeakLinearTime(int[][] arr){
int rows = arr.length;
int cols = arr[0].length;
return kthLinearColumn(arr, 0, cols-1, 0, rows-1);
}
// helper function that splits on the middle Column
int kthLinearColumn(int[][] arr, int loCol, int hiCol, int loRow, int hiRow){
if(loCol==hiCol){
int max = arr[loRow][loCol];
int foundRow = loRow;
for(int row = loRow; row<=hiRow; row++){
if(max < arr[row][loCol]){
max = arr[row][loCol];
foundRow = row;
}
}
if(!correctPeak(arr, foundRow, loCol)){
System.out.println("THIS PEAK IS WRONG");
}
return max;
}
int midCol = (loCol+hiCol)/2;
int max = arr[loRow][loCol];
for(int row=loRow; row<=hiRow; row++){
max = Math.max(max, arr[row][midCol]);
}
boolean centralMax = true;
boolean rightMax = false;
boolean leftMax = false;
if(midCol-1 >= 0){
for(int row = loRow; row<=hiRow; row++){
if(arr[row][midCol-1] > max){
max = arr[row][midCol-1];
centralMax = false;
leftMax = true;
}
}
}
if(midCol+1 < M){
for(int row=loRow; row<=hiRow; row++){
if(arr[row][midCol+1] > max){
max = arr[row][midCol+1];
centralMax = false;
leftMax = false;
rightMax = true;
}
}
}
if(centralMax) return max;
if(rightMax) return kthLinearRow(arr, midCol+1, hiCol, loRow, hiRow);
if(leftMax) return kthLinearRow(arr, loCol, midCol-1, loRow, hiRow);
throw new RuntimeException("INCORRECT CODE");
}
// helper function that splits on the middle
int kthLinearRow(int[][] arr, int loCol, int hiCol, int loRow, int hiRow){
if(loRow==hiRow){
int ans = arr[loCol][loRow];
int foundCol = loCol;
for(int col=loCol; col<=hiCol; col++){
if(arr[loRow][col] > ans){
ans = arr[loRow][col];
foundCol = col;
}
}
if(!correctPeak(arr, loRow, foundCol)){
System.out.println("THIS PEAK IS WRONG");
}
return ans;
}
boolean centralMax = true;
boolean upperMax = false;
boolean lowerMax = false;
int midRow = (loRow+hiRow)/2;
int max = arr[midRow][loCol];
for(int col=loCol; col<=hiCol; col++){
max = Math.max(max, arr[midRow][col]);
}
if(midRow-1>=0){
for(int col=loCol; col<=hiCol; col++){
if(arr[midRow-1][col] > max){
max = arr[midRow-1][col];
upperMax = true;
centralMax = false;
}
}
}
if(midRow+1<N){
for(int col=loCol; col<=hiCol; col++){
if(arr[midRow+1][col] > max){
max = arr[midRow+1][col];
lowerMax = true;
centralMax = false;
upperMax = false;
}
}
}
if(centralMax) return max;
if(lowerMax) return kthLinearColumn(arr, loCol, hiCol, midRow+1, hiRow);
if(upperMax) return kthLinearColumn(arr, loCol, hiCol, loRow, midRow-1);
throw new RuntimeException("Incorrect code");
}
int[][] randomArray(){
int[][] arr = new int[N][M];
for(int i=0; i<N; i++)
for(int j=0; j<M; j++)
arr[i][j] = (int)(Math.random()*1000000000);
return arr;
}
boolean correctPeak(int[][] arr, int row, int col){//Function that checks if arr[row][col] is a peak or not
if(row-1>=0 && arr[row-1][col]>arr[row][col]) return false;
if(row+1<N && arr[row+1][col]>arr[row][col]) return false;
if(col-1>=0 && arr[row][col-1]>arr[row][col]) return false;
if(col+1<M && arr[row][col+1]>arr[row][col]) return false;
return true;
}
}
To see thata(n):
Calculation step is in the picture
To see algorithm implementation:
1) start with either 1a) or 1b)
1a) set left half, divider, right half.
1b) set top half, divider, bottom half.
2) Find global maximum on the divider. [theta n]
3) Find the values of its neighbour. And record the largest node ever visited as the bestSeen node. [theta 1]
# update the best we've seen so far based on this new maximum
if bestSeen is None or problem.get(neighbor) > problem.get(bestSeen):
bestSeen = neighbor
if not trace is None: trace.setBestSeen(bestSeen)
4) check if the global maximum is larger than the bestSeen and its neighbour. [theta 1]
//Step 4 is the main key of why this algorithm works
# return when we know we've found a peak
if neighbor == bestLoc and problem.get(bestLoc) >= problem.get(bestSeen):
if not trace is None: trace.foundPeak(bestLoc)
return bestLoc
5) If 4) is True, return the global maximum as 2-D peak.
Else if this time did 1a), choose the half of BestSeen, go back to step 1b)
Else, choose the half of BestSeen, go back to step 1a)
To see visually why this algorithm works, it is like grabbing the greatest value side, keep reducing the boundaries and eventually get the BestSeen value.
# Visualised simulation
round1
round2
round3
round4
round5
round6
finally
For this 10*10 matrix, we used only 6 steps to search for the 2-D peak, its quite convincing that it is indeed theta n
By Falcon