So i\'ve read that observables are looking to overtake promises in terms of usage in some of upcoming JavaScript MVC\'s:
When you understand Observable
s correctly, the differences to Promise
s are pretty obvious.
The best way to demystify a convoluted concept is to implement it from scratch. Here is an almost purely functional Observable
implementation and an example, that wouldn't work with Promise
s:
/*** Observable type ***/
// type constructor (of a product type)
const proType = name => cons => {
const f = (k, ...args) =>
Object.defineProperties({["run" + name]: k}, {
[Symbol.toStringTag]: {value: name},
[Symbol("args")]: {value: args}
});
return cons(f);
};
// value constructor
const Observable = proType("Observable")
(Observable => k => Observable(k));
/*** Observer factory ***/
const Observer = observer => {
let isUnsubscribed = false;
return {
next: function(x) {
if (isUnsubscribed)
throw new Error("unsubscribed");
else {
try {
return observer.next(x);
}
catch(e) {
isUnsubscribed = true;
this.cancel();
throw e;
}
}
},
error: function(e) {
if (isUnsubscribed)
throw new Error("unsubscribed");
else {
try {
return observer.error(e);
}
catch(e_) {
isUnsubscribed = true;
this.cancel();
throw e_;
}
}
},
complete: function() {
if (isUnsubscribed)
throw new Error("unsubscribed");
else {
try {
const r = observer.complete();
this.cancel();
return r;
}
catch(e) {
isUnsubscribed = true;
cancel();
throw e;
}
}
}
};
};
/*** combinators + auxiliary functions ***/
const subscribe = observable => handlers => {
const observer = Observer(handlers),
cancel = observable.runObservable(observer);
observer.cancel = cancel;
return cancel;
};
const obsMap = f => observable =>
Observable(observer => {
const mapObserver = {
next: x => observer.next(f(x)),
error: e => observer.error(e),
complete: () => observer.complete()
};
return observable.runObservable(mapObserver);
});
/*** main ***/
// create an Observable instance
const numStream = Observable(observer => {
let i = 0;
const timer = setInterval(() => {
observer.next(i++);
}, 1000);
return () => clearTimeout(timer);
});
// map a function over it
const squaredNumStream =
obsMap(x => x * x) (numStream);
// run the observable
const cancel = subscribe(squaredNumStream) ({
next: x => console.log(x),
error: e => console.error(e),
complete: () => console.log("finished")
});
// cancel it
setTimeout(cancel, 11000);
In the example above the Observable
squaredNumStream
emits a stream of theoretically infinite values asynchronously. You cannot do this with Promise
s, because they represent a single future value.
I could have easily subscribed to another squaredNumStream
without both instances interfering with each other. This is because Observable
s are unicast, whereas Promise
s are multicast.
squaredNumStream
doesn't run at declaration time, but only after subscription, because Observable
s are lazily evaluated. Promise
s on the other hand are eagerly evaluated that is, they start running as soon as you create them.
And finally, Observable
s are cancelable by design, whereas Promise
s are hard to cancel due to there unicast semantics.