I am using RandomForestClassifier implemented in python sklearn package to build a binary classification model. The below is the results of cross validations:
I would agree with @Falcon w.r.t. the dataset size. It's likely that the main problem is the small size of the dataset. If possible, the best thing you can do is get more data, the more data (generally) the less likely it is to overfit, as random patterns that appear predictive start to get drowned out as the dataset size increases.
That said, I would look at the following params:
Note when doing this work to be scientific. Use 3 datasets, a training set, a separate 'development' dataset to tweak your parameters, and a test set that tests the final model, with the optimal parameters. Only change one parameter at a time and evaluate the result. Or experiment with the sklearn gridsearch algorithm to search across these parameters all at once.