Using two databases to illustrate this example: CouchDB and Cassandra.
CouchDB uses a B+ Tree for document indexes (using a clever
When comparing a BTree index to an SSTable index, you should consider the write complexity:
When writing randomly to a copy-on-write BTree, you will incur random reads (to do the copy of the leaf node and path). So while the writes my be sequential on disk, for datasets larger than RAM, these random reads will quickly become the bottle neck. For a SSTable-like index, no such read occurs on write - there will only be the sequential writes.
You should also consider that in the worse case, every update to a BTree could incur log_b N IOs - that is, you could end up writing 3 or 4 blocks for every key. If key size is much less than block size, this is extremely expensive. For an SSTable-like index, each write IO will contain as many fresh keys as it can, so the IO cost for each key is more like 1/B.
In practice, this make SSTable-like thousands of times faster (for random writes) than BTrees.
When considering implementation details, we have found it a lot easier to implement SSTable-like indexes (almost) lock-free, where as locking strategies for BTrees has become quite complicated.
You should also re-consider your read costs. You are correct than a BTree is O(log_b N) random IOs for random point reads, but a SSTable-like index is actually O(#sstables . log_b N). Without an decent merge scheme, #sstables is proportional to N. There are various tricks to get round this (using Bloom Filters, for instance), but these don't help with small, random range queries. This is what we found with Cassandra:
Cassandra under heavy write load
This is why Castle, our (GPL) storage engine, does merges slightly differently, and can achieve a lot better (O(log^2 N)) range queries performance with a slight trade off in write performance (O(log^2 N / B)). In practice we find it to be quicker than Cassandra's SSTable index for writes as well.
If you want to know more about this, I've given a talk about how it works:
I think fractal trees, as used by Tokutek, are a better index for a database. They offer real-world 20x to 80x improvements over b-trees.
There are excellent explanations of how fractal tree indices work here.
Some things that should also be mentioned about each approach:
O(logn)
. However, a single database write can lead to multiple writes in the storage system. For example, when a node is full, it has to be split and that means that there will be 2 writes for the 2 new nodes and 1 additional write for updating the parent node. You can see how that could increase if the parent node was also full.O(logn)
. However, always bear in mind that they are done in memory, so they should be orders of magnitude faster than the logarithmic operations in disk of B-trees. For the sake of completeness, we should mention that writes are also written to a write-ahead log for crash recovery. But, given that these are all sequential writes, they are expected to be much more efficient than the random writes of B-trees.As it becomes evident, a comparison between these 2 approaches is much more complicated. In an extremely simplified attempt to provide a concrete comparison, I think we could say that:
References
[1] A Performance Comparison of LevelDB and MySQL
[2] Designing Data-intensive Applications
LSM-Trees is better than B-Trees on storage engine structured. It converts random-write to aof in a way. Here is a LSM-Tree src: https://github.com/shuttler/lsmtree