I wish to create a fuzzy search algorithm. However, upon hours of research I am really struggling.
I want to create an algorithm that performs a fuzzy search on a l
Fuzzy Sort is a javascript library is helpful to perform string matching from a large collection of data.
The following code will helpful to use fuzzy sort in react.js.
Install fuzzy sort through npm,
npm install fuzzysort
Full demo code in react.js
import React from 'react';
import './App.css';
import data from './testdata';
const fuzzysort = require('fuzzysort');
class App extends React.Component {
constructor(props){
super(props)
this.state = {
keyword: '',
results: [],
}
console.log("data: ", data["steam_games"]);
}
search(keyword, category) {
return fuzzysort.go(keyword, data[category]);
}
render(){
return (
<div className="App">
<input type="text" onChange={(e)=> this.setState({keyword: e.target.value})}
value={this.state.keyword}
/>
<button onClick={()=>this.setState({results: this.search(this.state.keyword, "steam_games")})}>Search</button>
{this.state.results !== null && this.state.results.length > 0 ?
<h3>Results:</h3> : null
}
<ul>
{this.state.results.map((item, index) =>{
return(
<li key={index}>{item.score} : {item.target}</li>
)
})
}
</ul>
</div>
);
}
}
export default App;
For more refer FuzzySort
I wrote an article about how I implemented a fuzzy search:
https://medium.com/@Srekel/implementing-a-fuzzy-search-algorithm-for-the-debuginator-cacc349e6c55
The implementation is in Github and is in the public domain, so feel free to have a look.
https://github.com/Srekel/the-debuginator/blob/master/the_debuginator.h#L1856
The basics of it is: Split all strings you'll be searching for into parts. So if you have paths, then "C:\documents\lol.txt" is maybe "C", "documents", "lol", "txt".
Ensure you lowercase these strings to ensure that you it's case insensitive. (Maybe only do it if the search string is all-lowercase).
Then match your search string against this. In my case I want to match it regardless of order, so "loldoc" would still match the above path even though "lol" comes after "doc".
The matching needs to have some scoring to be good. The most important part I think is consecutive matching, so the more characters directly after one another that match, the better. So "doc" is better than "dcm".
Then you'll likely want to give extra score for a match that's at the start of a part. So you get more points for "doc" than "ocu".
In my case I also give more points for matching the end of a part.
And finally, you may want to consider giving extra points for matching the last part(s). This makes it so that matching the file name/ending scores higher than the folders leading up to it.
A simple algorithm for "a kind of fuzzy search"
To be honest, in some cases, fuzzy search is mostly useless and I think that a simpler algorithm can improve the search result while providing the feeling that we are still performing a fuzzy search.
Here is my use case: Filtering down a list of countries using "Fuzzy search".
The list I was working with had two countries starting with Z: Zambia and Zimbabwe.
I was using Fusejs.
In this case, when entering the needle "zam", the result set was having 19 matches and the most relevant one for any human (Zambia) at the bottom of the list. And most of the other countries in the result did not even have the letter z in their name.
This was for a mobile app where you can pick a country from a list. It was supposed to be much like when you have to pick a contact from the phone's contacts. You can filter the contact list by entering some term in the search box.
IMHO, this kind of limited content to search from should not be treated in a way that will have people asking "what the heck?!?".
One might suggest to sort by most relevant match. But that's out of the question in this case because the user will then always have to visually find the "Item of Interest" in the reduced list. Keep in mind that this is supposed to be a filtering tool, not a search engine "à la Google". So the result should be sorted in a predictable way. And before filtering, the sorting was alphabetical. So the filtered list should just be an alphabetically sorted subset of the original list.
So I came up with the following algorithm ...
.*
pattern at the beginning and end of the needle.*
pattern between each letter of the needle.*z.*a.*m.*
In this case, the user will have a much expected result by finding everything that has somehow the letters z, a and m appearing in this order. All the letters in the needles will be present in the matches in the same order.
This will also match country names like Mozambique ... which is perfect.
I just think that sometimes, we should not try to kill a fly with a bazooka.
Can someone please suggest me a good efficient fuzzy search algorithm. with:
In this repository I've collected a simple (but fast) algorithm to perform fuzzy-search the way it's done in editors like Sublime Text, VSCode, etc. (i.e. with just a few keystrokes you get filtered results of entries that match the typed chars in a fuzzy way):
The algorithm was written by Forrest Smith, and it's just called "fts_fuzzy_match". In the repository you'll find two variations of the same algorithm implemented in over 10 different languages.
The original article can be found here:
Considering that you're trying to do a fuzzy search on a list of school names, I don't think you want to go for traditional string similarity like Levenshtein distance. My assumption is that you're taking a user's input (either keyboard input or spoken over the phone), and you want to quickly find the matching school.
Distance metrics tell you how similar two strings are based on substitutions, deletions, and insertions. But those algorithms don't really tell you anything about how similar the strings are as words in a human language.
Consider, for example, the words "smith," "smythe," and "smote". I can go from "smythe" to "smith" in two steps:
smythe -> smithe -> smith
And from "smote" to "smith" in two steps:
smote -> smite -> smith
So the two have the same distance as strings, but as words, they're significantly different. If somebody told you (spoken language) that he was looking for "Symthe College," you'd almost certainly say, "Oh, I think you mean Smith." But if somebody said "Smote College," you wouldn't have any idea what he was talking about.
What you need is a phonetic algorithm like Soundex or Metaphone. Basically, those algorithms break a word down into phonemes and create a representation of how the word is pronounced in spoken language. You can then compare the result against a known list of words to find a match.
Such a system would be much faster than using a distance metric. Consider that with a distance metric, you need to compare the user's input with every word in your list to obtain the distance. That is computationally expensive and the results, as I demonstrated with "smith" and "smote" can be laughably bad.
Using a phonetic algorithm, you create the phoneme representation of each of your known words and place it in a dictionary (a hash map or possibly a trie). That's a one-time startup cost. Then, whenever the user inputs a search term, you create the phoneme representation of his input and look it up in your dictionary. That is a lot faster and produces much better results.
Consider also that when people misspell proper names, they almost always get the first letter right, and more often than not pronouncing the misspelling sounds like the actual word they were trying to spell. If that's the case, then the phonetic algorithms are definitely the way to go.
You're confusing fuzzy search algorithms with implementation: a fuzzy search of a word may return 400 results of all the words that have Levenshtein distance of, say, 2. But, to the user you have to display only the top 5-10.
Implementation-wise, you'll pre-process all the words in the dictionary and save the results into a DB. The popular words (and their fuzzy-likes) will be saved into cache-layer - so you won't have to hit the DB for every request.
You may add an AI layer that will add the most common spelling mistakes and add them to the DB. And etc.