I recently came across an interview question asked by Amazon and I am not able to find an optimized algorithm to solve this question:
You are given an input array wh
private static int soln1(int[] a)
{
int ret=0;
int l=a.length;
int st,en=0;
int h,i,j,k=0;
int sm;
for(h=0;h<l;h++)
{
for(i=1;i<l;i++)
{
if(a[i]<a[i-1])
{
st=i;
for(j=i;j<l-1;j++)
{
if(a[j]<=a[i] && a[j+1]>a[i])
{
en=j;
h=en;
break;
}
}
if(st<=en)
{
sm=a[st-1];
if(sm>a[en+1])
sm=a[en+1];
for(k=st;k<=en;k++)
{
ret+=sm-a[k];
a[k]=sm;
}
}
}
}
}
return ret;
}
I have a solution that only requires a single traversal from left to right.
def standing_water(heights):
if len(heights) < 3:
return 0
i = 0 # index used to iterate from left to right
w = 0 # accumulator for the total amount of water
while i < len(heights) - 1:
target = i + 1
for j in range(i + 1, len(heights)):
if heights[j] >= heights[i]:
target = j
break
if heights[j] > heights[target]:
target = j
if target == i:
return w
surface = min(heights[i], heights[target])
i += 1
while i < target:
w += surface - heights[i]
i += 1
return w
An intuitive solution for this problem is one in which you bound the problem and fill water based on the height of the left and right bounds.
My solution:
Here is an implementation in C#:
int[] towers = {1,5,3,7,2};
int currentMinimum = towers[0];
bool rightBoundFound = false;
int i = 0;
int leftBoundIndex = 0;
int rightBoundIndex = 0;
int waterAdded = 0;
while(i < towers.Length - 1)
{
currentMinimum = towers[i];
if(towers[i] < currentMinimum)
{
currentMinimum = towers[i];
}
if(towers[i + 1] > towers[i])
{
rightBoundFound = true;
rightBoundIndex = i + 1;
}
if (rightBoundFound)
{
for(int j = leftBoundIndex + 1; j < rightBoundIndex; j++)
{
int difference = 0;
if(towers[leftBoundIndex] < towers[rightBoundIndex])
{
difference = towers[leftBoundIndex] - towers[j];
}
else if(towers[leftBoundIndex] > towers[rightBoundIndex])
{
difference = towers[rightBoundIndex] - towers[j];
}
else
{
difference = towers[rightBoundIndex] - towers[j];
}
towers[j] += difference;
waterAdded += difference;
}
if (towers[leftBoundIndex] > towers[rightBoundIndex])
{
i = leftBoundIndex - 1;
}
else if (towers[rightBoundIndex] > towers[leftBoundIndex])
{
leftBoundIndex = rightBoundIndex;
i = rightBoundIndex - 1;
}
else
{
leftBoundIndex = rightBoundIndex;
i = rightBoundIndex - 1;
}
rightBoundFound = false;
}
i++;
}
I have no doubt that there are more optimal solutions. I am currently working on a single-pass optimization. There is also a very neat stack implementation of this problem, and it uses a similar idea of bounding.
JavaScript Program for finding store total water:
let buildingHeights = [6, 1, 3, 5, 9, 2, 8];
/*
* TOTAL store water
* */
let max = (n1, n2) => {
return n1 > n2 ? n1 : n2;
};
let min = (n1, n2) => {
return n1 > n2 ? n2 : n1;
};
let maxHeightFromLeft = {}, maxHeightFromRight = {};
for (let i = 0; i < buildingHeights.length; i++) {
maxHeightFromLeft[i] = max(buildingHeights[i], (i != 0) ? maxHeightFromLeft[i - 1] : 0);
}
for (let i = buildingHeights.length - 1; i >= 0; i--) {
maxHeightFromRight[i] = max(buildingHeights[i], i < (buildingHeights.length - 1) ? maxHeightFromRight[i + 1] : 0);
}
let totalStorage = 0;
for (let i = 0; i < buildingHeights.length; i++) {
totalStorage += min(maxHeightFromLeft[i], maxHeightFromRight[i]) - buildingHeights[i];
}
console.log(totalStorage);
Here is my take to the problem, I use a loop to see if the previous towers is bigger than the actual one. If it is then I create another loop to check if the towers coming after the actual one are bigger or equal to the previous tower. If that's the case then I just add all the differences in height between the previous tower and all other towers. If not and if my loop reaches my last object then I simply reverse the array so that the previous tower becomes my last tower and call my method recursively on it. That way I'm certain to find a tower bigger than my new previous tower and will find the correct amount of water collected.
public class towers {
public static int waterLevel(int[] i) {
int totalLevel = 0;
for (int j = 1; j < i.length - 1; j++) {
if (i[j - 1] > i[j]) {
for (int k = j; k < i.length; k++) {
if (i[k] >= i[j - 1]) {
for (int l = j; l < k; l++) {
totalLevel += (i[j - 1] - i[l]);
}
j = k;
break;
}
if (k == i.length - 1) {
int[] copy = Arrays.copyOfRange(i, j - 1, k + 1);
int[] revcopy = reverse(copy);
totalLevel += waterLevel(revcopy);
}
}
}
}
return totalLevel;
}
public static int[] reverse(int[] i) {
for (int j = 0; j < i.length / 2; j++) {
int temp = i[j];
i[j] = i[i.length - j - 1];
i[i.length - j - 1] = temp;
}
return i;
}
public static void main(String[] args) {
System.out.println(waterLevel(new int[] {1, 6, 3, 2, 2, 6}));
}
}
Here's an efficient solution in Haskell
rainfall :: [Int] -> Int
rainfall xs = sum (zipWith (-) mins xs)
where mins = zipWith min maxl maxr
maxl = scanl1 max xs
maxr = scanr1 max xs
it uses the same two-pass scan algorithm mentioned in the other answers.