I have the following csv file.
Index,Arrival_Time,Creation_Time,x,y,z,User,Model,Device,gt
0,1424696633908,1424696631913248572,-5.958191,0.6880646,8.135345,a
If you have a csv data in a file as given in the question then you can use sqlContext
to read it as a dataframe
and cast the appropriate types as
df = sqlContext.read.format("com.databricks.spark.csv").option("header", True).load("path to csv file")
import pyspark.sql.functions as F
import pyspark.sql.types as T
df = df.select(F.col('User'), F.col('Model'), F.col('gt'), F.col('x').cast('float'), F.col('y').cast('float'), F.col('z').cast('float'))
I have selected primary keys and necessary columns only which should give you
+----+------+-----+----------+---------+--------+
|User|Model |gt |x |y |z |
+----+------+-----+----------+---------+--------+
|a |nexus4|stand|-5.958191 |0.6880646|8.135345|
|a |nexus4|stand|-5.95224 |0.6702118|8.136536|
|a |nexus4|stand|-5.9950867|0.6535492|8.204376|
|a |nexus4|stand|-5.9427185|0.6761627|8.128204|
+----+------+-----+----------+---------+--------+
All of your requirements: median, deviation, max and min depend on the list of x
, y
and z
when grouped by primary keys: User, Model and gt
.
So you would need groupBy
and collect_list
inbuilt function and a udf
function to calculate all of your requiremnts. Final step is to separate them in different columns which are given below
from math import sqrt
def calculation(array):
num_items = len(array)
print num_items, sum(array)
mean = sum(array) / num_items
differences = [x - mean for x in array]
sq_differences = [d ** 2 for d in differences]
ssd = sum(sq_differences)
variance = ssd / (num_items - 1)
sd = sqrt(variance)
return [mean, sd, max(array), min(array)]
calcUdf = F.udf(calculation, T.ArrayType(T.FloatType()))
df.groupBy('User', 'Model', 'gt')\
.agg(calcUdf(F.collect_list(F.col('x'))).alias('x'), calcUdf(F.collect_list(F.col('y'))).alias('y'), calcUdf(F.collect_list(F.col('z'))).alias('z'))\
.select(F.col('User'), F.col('Model'), F.col('gt'), F.col('x')[0].alias('median_x'), F.col('y')[0].alias('median_y'), F.col('z')[0].alias('median_z'), F.col('x')[1].alias('deviation_x'), F.col('y')[1].alias('deviation_y'), F.col('z')[1].alias('deviation_z'), F.col('x')[2].alias('max_x'), F.col('y')[2].alias('max_y'), F.col('z')[2].alias('max_z'), F.col('x')[3].alias('min_x'), F.col('y')[3].alias('min_y'), F.col('z')[3].alias('min_z'))\
.show(truncate=False)
So finally you should have
+----+------+-----+---------+---------+--------+-----------+-----------+-----------+----------+---------+--------+----------+---------+--------+
|User|Model |gt |median_x |median_y |median_z|deviation_x|deviation_y|deviation_z|max_x |max_y |max_z |min_x |min_y |min_z |
+----+------+-----+---------+---------+--------+-----------+-----------+-----------+----------+---------+--------+----------+---------+--------+
|a |nexus4|stand|-5.962059|0.6719971|8.151115|0.022922019|0.01436464 |0.0356973 |-5.9427185|0.6880646|8.204376|-5.9950867|0.6535492|8.128204|
+----+------+-----+---------+---------+--------+-----------+-----------+-----------+----------+---------+--------+----------+---------+--------+
I hope the answer is helpful.
You'll have to used groupByKey
to get median. While generally not preferred for performance reasons, finding the median value of a list of numbers can not be parallelized easily. The logic to compute median requires the entire list of numbers. groupByKey
is the aggregation method to use when you need to process all the values for a key at the same time
Also, as mentioned in the comments, this task would be easier using Spark DataFrames.