I am learning to use GSL to solve ODE. I wanted to solve double pendulum problem using GSL ODE functions. I decided to use this equations:
You could also use C++ with odeint library if you are interested. For the double pendulum system. For matrices I use Eigen and for solving ODEs I use odeint , therefore this is the code for your problem.
#include <iostream>
#include <cmath>
#include <Eigen/Dense>
#include <boost/math/constants/constants.hpp>
#include <boost/numeric/odeint.hpp>
#include <iomanip>
using namespace std;
using namespace boost::numeric::odeint;
typedef std::vector< double > state_type;
void equations(const state_type &y, state_type &dy, double x)
{
const double m1(0.5), m2(0.5),
L1(0.1), L2(0.1),
g(9.81);
Eigen::MatrixXd M(2, 2), C(2, 1), B(2,1);
/*
Theta 1 = y[0]
dTheta 1 = y[1] = dy[0]
ddTheta 1 = dy[1]
Theta 2 = y[2]
dTheta 2 = y[3] = dy[2]
ddTheta 2 = dy[3]
*/
double delta(y[0] - y[2]);
M << (m1 + m2)*L1, m2*L2*cos(delta),
m2*L1*cos(delta), m2*L2;
C << m2*L1*L2*y[3]*y[3]*sin(delta) + g*(m1 + m2)*sin(y[0]),
-m2*L1*y[1]*y[1]*sin(delta) + m2*g*sin(y[2]);
//#####################( ODE Equations )################################
dy[0] = y[1];
dy[2] = y[3];
B = M.inverse() * (-C);
dy[1] = B(0,0);
dy[3] = B(1,0);
}
int main(int argc, char **argv)
{
const double dt = 0.01;
runge_kutta_dopri5 < state_type > stepper;
double pi = boost::math::constants::pi<double>();
state_type y(4);
// initial values
y[0] = pi/3.0; // Theta 1
y[1] = 0.0; // dTheta 1
y[2] = pi/4.0; // Theta 2
y[3] = 0.0; // dTheta 2
for (double t(0.0); t <= 5; t += dt){
cout << fixed << setprecision(2);
std::cout << "t: " << t << " Theta 1: " << y[0] << " dTheta 1: " << y[1]
<< " Theta 2: " << y[2] << " dTheta 2: " << y[3] << std::endl;
stepper.do_step(equations, y, t, dt);
}
}
The results are
It really is the order of arguments in y
. In the cited source it was in the "natural" order, the reason for your mix is not really clear. Giving names to some sub-expressions, the ODE function might also be written as
int func(double t, const double y[], double f[], void *params) {
double th1 = y[0], w1 = y[1];
double th2 = y[2], w2 = y[3];
f[0] = w1; // dot theta_1 = omega_1
f[2] = w2; // dot theta_2 = omega_2
double del = th2 - th1;
double den = (M1 + M2) - M2 * cos(del) * cos(del);
double Lwws1 = L1 * (w1*w1) * sin(del);
double Lwws2 = L2 * (w2*w2) * sin(del);
double Gs1 = G*sin(th1), Gs2 = G*sin(th2);
f[1] = (M2 * (Lwws1 + Gs2) * cos(del) + M2 * Lwws2 - (M1 + M2) * Gs1) / (L1*den);
f[3] = (-M2 * Lwws2 * cos(del) + (M1 + M2) * ( Gs1 * cos(del) - Lwws1 - Gs2) / (L2*den);
return GSL_SUCCESS;
}
Of course, this assumes that the initial point vector is defined as
double y[4] = {S1_ANGLE,V1_INIT,S2_ANGLE,V2_INIT};
and that the interpretation of the results corresponds to that.