I have some data that doesn\'t fit a linear regression,
In fact should fit \'exactly\' a quadratic function:
P = R*I**2
Use PolynomialFeatures.
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
x = np.array([[1,],[2,],[3,]])
X = PolynomialFeatures(degree=2).fit_transform(x)
X
Output:
array([[1., 1., 1.],
[1., 2., 4.],
[1., 3., 9.]])
You can use numpy's polyfit.
import numpy as np
from matplotlib import pyplot as plt
X = np.linspace(0, 100, 50)
Y = 23.24 + 2.2*X + 0.24*(X**2) + 10*np.random.randn(50) #added some noise
coefs = np.polyfit(X, Y, 2)
print(coefs)
p = np.poly1d(coefs)
plt.plot(X, Y, "bo", markersize= 2)
plt.plot(X, p(X), "r-") #p(X) evaluates the polynomial at X
plt.show()
Out:
[ 0.24052058 2.1426103 25.59437789]