Optimization for finding perfect-square algorithm

后端 未结 3 999
醉酒成梦
醉酒成梦 2020-12-21 18:04

The question I\'m working on is:

Find which sum of squared factors are a perfect square given a specific range. So if the range was (1..10) you woul

相关标签:
3条回答
  • 2020-12-21 18:39

    I would start by introducing some helper methods (factors and square?) to make your code more readable.

    Furthermore, I would reduce the number of ranges and arrays to improve memory usage.

    require 'prime'
    
    def factors(number)
      [1].tap do |factors|
        primes = number.prime_division.flat_map { |p, e| Array.new(e, p) }
        (1..primes.size).each do |i| 
          primes.combination(i).each do |combination| 
            factor = combination.inject(:*)
            factors << factor unless factors.include?(factor)
          end
        end
      end
    end
    
    def square?(number)
      square = Math.sqrt(number)
      square == square.floor
    end
    
    def list_squared(m, n)
      (m..n).map do |number|
        sum = factors(number).inject { |sum, x| sum + x ** 2 }
        [number, sum] if square?(sum)
      end.compact
    end
    
    list_squared(1, 250)
    

    A benchmark with a narrow range (up to 250) shows only a minor improvement:

    require 'benchmark'
    n = 1_000
    
    Benchmark.bmbm(15) do |x|
      x.report("original_list_squared :") { n.times do; original_list_squared(1, 250); end }
      x.report("improved_list_squared :") { n.times do; improved_list_squared(1, 250); end }
    end
    
    # Rehearsal -----------------------------------------------------------
    # original_list_squared :   2.720000   0.010000   2.730000 (  2.741434)
    # improved_list_squared :   2.590000   0.000000   2.590000 (  2.604415)
    # -------------------------------------------------- total: 5.320000sec
    
    #                               user     system      total        real
    # original_list_squared :   2.710000   0.000000   2.710000 (  2.721530)
    # improved_list_squared :   2.620000   0.010000   2.630000 (  2.638833)
    

    But a benchmark with a wider range (up to 10000) shows a much better performance than the original implementation:

    require 'benchmark'
    n = 10
    
    Benchmark.bmbm(15) do |x|
      x.report("original_list_squared :") { n.times do; original_list_squared(1, 10000); end }
      x.report("improved_list_squared :") { n.times do; improved_list_squared(1, 10000); end }
    end
    
    # Rehearsal -----------------------------------------------------------
    # original_list_squared :  36.400000   0.160000  36.560000 ( 36.860889)
    # improved_list_squared :   2.530000   0.000000   2.530000 (  2.540743)
    # ------------------------------------------------- total: 39.090000sec
    
    #                               user     system      total        real
    # original_list_squared :  36.370000   0.120000  36.490000 ( 36.594130)
    # improved_list_squared :   2.560000   0.010000   2.570000 (  2.581622)
    

    tl;dr: The bigger the N the better my code performs compared to the original implementation...

    0 讨论(0)
  • 2020-12-21 18:46

    The trick that frequently solves questions like this is to switch from trial division to a sieve. In Python (sorry):

    def list_squared(m, n):
        factor_squared_sum = {i: 0 for i in range(m, n + 1)}
        for factor in range(1, n + 1):
            i = n - n % factor  # greatest multiple of factor less than or equal to n
            while i >= m:
                factor_squared_sum[i] += factor ** 2
                i -= factor
        return {i for (i, fss) in factor_squared_sum.items() if isqrt(fss) ** 2 == fss}
    
    
    def isqrt(n):
        # from http://stackoverflow.com/a/15391420
        x = n
        y = (x + 1) // 2
        while y < x:
            x = y
            y = (x + n // x) // 2
        return x
    

    The next optimization is to step factor only to isqrt(n), adding the factor squares in pairs (e.g., 2 and i // 2).

    0 讨论(0)
  • 2020-12-21 18:54

    One way to make it more efficient is to use Ruby's built-in method Prime::prime_division.

    For any number n, if prime_division returns an array containing a single element, that element will be [n,1] and n will have been shown to be prime. That prime number has factors n and 1, so must be treated differently than numbers that are not prime.

    require 'prime'
    
    def list_squared(range)
      range.each_with_object({}) do |i,h|
        facs = Prime.prime_division(i)
        ssq = 
        case facs.size
        when 1 then facs.first.first**2 + 1
        else facs.inject(0) { |tot,(a,b)| tot + b*(a**2) }
        end
        h[i] = facs if (Math.sqrt(ssq).to_i)**2 == ssq
      end
    end
    
    list_squared(1..10_000)
      #=> { 1=>[], 48=>[[2, 4], [3, 1]], 320=>[[2, 6], [5, 1]], 351=>[[3, 3], [13, 1]],
      #     486=>[[2, 1], [3, 5]], 1080=>[[2, 3], [3, 3], [5, 1]],
      #     1260=>[[2, 2], [3, 2], [5, 1], [7, 1]], 1350=>[[2, 1], [3, 3], [5, 2]],
      #     1375=>[[5, 3], [11, 1]], 1792=>[[2, 8], [7, 1]], 1836=>[[2, 2], [3, 3], [17, 1]],
      #     2070=>[[2, 1], [3, 2], [5, 1], [23, 1]], 2145=>[[3, 1], [5, 1], [11, 1], [13, 1]],
      #     2175=>[[3, 1], [5, 2], [29, 1]], 2730=>[[2, 1], [3, 1], [5, 1], [7, 1], [13, 1]],
      #     2772=>[[2, 2], [3, 2], [7, 1], [11, 1]], 3072=>[[2, 10], [3, 1]],
      #     3150=>[[2, 1], [3, 2], [5, 2], [7, 1]], 3510=>[[2, 1], [3, 3], [5, 1], [13, 1]],
      #     4104=>[[2, 3], [3, 3], [19, 1]], 4305=>[[3, 1], [5, 1], [7, 1], [41, 1]],
      #     4625=>[[5, 3], [37, 1]], 4650=>[[2, 1], [3, 1], [5, 2], [31, 1]],
      #     4655=>[[5, 1], [7, 2], [19, 1]], 4998=>[[2, 1], [3, 1], [7, 2], [17, 1]],
      #     5880=>[[2, 3], [3, 1], [5, 1], [7, 2]], 6000=>[[2, 4], [3, 1], [5, 3]],
      #     6174=>[[2, 1], [3, 2], [7, 3]], 6545=>[[5, 1], [7, 1], [11, 1], [17, 1]],
      #     7098=>[[2, 1], [3, 1], [7, 1], [13, 2]], 7128=>[[2, 3], [3, 4], [11, 1]],
      #     7182=>[[2, 1], [3, 3], [7, 1], [19, 1]], 7650=>[[2, 1], [3, 2], [5, 2], [17, 1]],
      #     7791=>[[3, 1], [7, 2], [53, 1]], 7889=>[[7, 3], [23, 1]],
      #     7956=>[[2, 2], [3, 2], [13, 1], [17, 1]],
      #     9030=>[[2, 1], [3, 1], [5, 1], [7, 1], [43, 1]],
      #     9108=>[[2, 2], [3, 2], [11, 1], [23, 1]], 9295=>[[5, 1], [11, 1], [13, 2]],
      #     9324=>[[2, 2], [3, 2], [7, 1], [37, 1]]} 
    

    This calculation took approximately 0.15 seconds.

    For i = 6174

     (2**1) * (3**2) * (7**3) #=> 6174
    

    and

     1*(2**2) + 2*(3**2) + 3*(7**2) #=> 169 == 13*13 
    
    0 讨论(0)
提交回复
热议问题