I would like to calculate the pairwise euclidean distance matrix. I wrote Rcpp programs by the suggestion of Dirk Eddelbuettel as follows
Nu
First of all, just because you are writing the algorithm using Rcpp does not necessarily mean it will beat out the R equivalent, especially if the R function calls a C or Fortran routine to perform the bulk of the computations. In other cases where the function is written purely in R, there is a high probability that transforming it in Rcpp will yield the desired speed gain.
Remember, when rewriting internal functions, one is going up against the R Core team of absolutely insane C programmers most likely will win out.
dist()
Secondly, the distance calculation R uses is done in C as indicated by:
.Call(C_Cdist, x, method, attrs, p)
, which is the last line of the dist()
function's R source. This gives it a slight advantage vs. C++ as it more granular instead of templated.
Furthermore, the C implementation uses OpenMP when available to parallelize the computation.
Thirdly, by changing the subset order slightly and avoiding creating an additional variable, the timings between versions decrease.
#include <Rcpp.h>
// [[Rcpp::export]]
Rcpp::NumericMatrix calcPWD1 (const Rcpp::NumericMatrix & x){
unsigned int outrows = x.nrow(), i = 0, j = 0;
double d;
Rcpp::NumericMatrix out(outrows,outrows);
for (i = 0; i < outrows - 1; i++){
Rcpp::NumericVector v1 = x.row(i);
for (j = i + 1; j < outrows ; j ++){
d = sqrt(sum(pow(v1-x.row(j), 2.0)));
out(j,i)=d;
out(i,j)=d;
}
}
return out;
}
You were almost there. But your inner loop body tried to do too much in one line. Template programming is hard enough as it is, and sometimes it is just better to spread instructions out a little to give the compiler a better chance. So I just made it five statements, and built immediatelt.
New code:
#include <Rcpp.h>
using namespace Rcpp;
double dist1 (NumericVector x, NumericVector y){
int n = y.length();
double total = 0;
for (int i = 0; i < n ; ++i) {
total += pow(x(i)-y(i),2.0);
}
total = sqrt(total);
return total;
}
// [[Rcpp::export]]
NumericMatrix calcPWD (NumericMatrix x){
int outrows = x.nrow();
int outcols = x.nrow();
NumericMatrix out(outrows,outcols);
for (int i = 0 ; i < outrows - 1; i++){
for (int j = i + 1 ; j < outcols ; j ++) {
NumericVector v1 = x.row(i);
NumericVector v2 = x.row(j-1);
double d = dist1(v1, v2);
out(j-1,i) = d;
out(i,j-1)= d;
}
}
return (out) ;
}
/*** R
M <- matrix(log(1:9), 3, 3)
calcPWD(M)
*/
Running it:
R> sourceCpp("/tmp/mikebrown.cpp")
R> M <- matrix(log(1:9), 3, 3)
R> calcPWD(M)
[,1] [,2] [,3]
[1,] 0.000000 0.740322 0
[2,] 0.740322 0.000000 0
[3,] 0.000000 0.000000 0
R>
You may want to check your indexing logic though. Looks like you missed more comparisons.
Edit: For kicks, here is a more compact version of your distance function:
// [[Rcpp::export]]
double dist2(NumericVector x, NumericVector y){
double d = sqrt( sum( pow(x - y, 2) ) );
return d;
}