I\'m trying to compute a medal table for a sports event.
My data looks like this:
test <- data.frame(\"ID\" = c(\"1_1\", \"1_2\", \"1_3\", \"1_4\
A base R solution would be:
test <- data.frame("ID"=c("1_1", "1_2", "1_3", "1_4","1_5","1_6"),
"gold"=c(10,4,1,7,7,1),
"silver"=c(1,3,2,19,19,2),
"bronze"=c(1,8,2,0,0,2))
(test_ordered<-with(test, test[order(-gold,-silver,-bronze),]))
roll.any.greater <- function (mat) {
mat.lead <- head(mat, -1)
mat.lag <- tail(mat, -1)
result <- rep(1, nrow(mat.lead) + 1)
for (i in (2:length(result))) {
result[i] <- ifelse(any(as.logical(abs(mat.lead[i-1, ] - mat.lag[i-1, ]))) != FALSE,
i, result[i-1])
}
return(result)
}
(want <- cbind(test_ordered,
rank =
roll.any.greater(test_ordered[colnames(test_ordered) %in% c("gold", "silver", "bronze")])))
You may use the data.table
equivalent of base::rank
, frank
. A nice feature with frank
is that it accepts, not only vectors (as in rank
), but also a data.frame
or a data.table
as input. For these types of objects, the rank may be based on several columns.
Using your original data.frame
:
test$rank <- data.table::frank(test, -gold, -silver, -bronze, ties.method = "min")
Or if you want to go all in with data.table
functions:
setDT(test)[ , rank := frank(test, -gold, -silver, -bronze, ties.method = "min")]
setorder(test, rank)