I have a dataframe containing a column named COL which is structured in this way:
VALUE1###VALUE2
The followin
You can use ft_regex_tokenizer followed by sdf_separate_column.
ft_regex_tokenizer will split a column into a vector type, based on a regex. sdf_separate_column will split this into multiple columns.
mydf %>%
ft_regex_tokenizer(input_col="mycolumn", output_col="mycolumnSplit", pattern=";") %>%
sdf_separate_column("mycolumnSplit", into=c("column1", "column2")
UPDATE: in recent versions of sparklyr, the parameters input.col and output.col have been renamed to input_col and output_col, respectively.
Sparklyr version 0.5 has just been released, and it contains the ft_regex_tokenizer()
function that can do that:
A regex based tokenizer that extracts tokens either by using the provided regex pattern to split the text (default) or repeatedly matching the regex (if gaps is false).
library(dplyr)
library(sparklyr)
ft_regex_tokenizer(input_DF, input.col = "COL", output.col = "ResultCols", pattern = '\\###')
The splitted column "ResultCols" will be a list.