I am using SparkR:::map and my function returns a large-ish R dataframe for each input row, each of the same shape. I would like to write these dataframes as parquet files w
Assuming your data looks more or less like this:
rdd <- SparkR:::parallelize(sc, 1:5)
dfs <- SparkR:::map(rdd, function(x) mtcars[(x * 5):((x + 1) * 5), ])
and all columns have supported types you can convert it to the row-wise format:
rows <- SparkR:::flatMap(dfs, function(x) {
data <- as.list(x)
args <- list(FUN = list, SIMPLIFY = FALSE, USE.NAMES = FALSE)
do.call(mapply, append(args, data))
})
call createDataFrame
:
sdf <- createDataFrame(sqlContext, rows)
head(sdf)
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2
## 2 18.1 6 225.0 105 2.76 3.46 20.22 1 0 3 1
## 3 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
## 4 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2
## 5 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2
## 6 19.2 6 167.6 123 3.92 3.44 18.30 1 0 4 4
printSchema(sdf)
## root
## |-- mpg: double (nullable = true)
## |-- cyl: double (nullable = true)
## |-- disp: double (nullable = true)
## |-- hp: double (nullable = true)
## |-- drat: double (nullable = true)
## |-- wt: double (nullable = true)
## |-- qsec: double (nullable = true)
## |-- vs: double (nullable = true)
## |-- am: double (nullable = true)
## |-- gear: double (nullable = true)
## |-- carb: double (nullable = true)
and simply use write.df
/ saveDF
.
Problem is you shouldn't use an internal API in the first place. One of the reasons it was removed in the initial release is not robust enough to be used directly. Not to mention it is still not clear if it will be supported or even available in the future. Just saying...