Ultimately I want to take this:
2x + 3 = 5
and solve for x, by first subtract 3 from both sides so 2x = 2
, then divide both si
While your problem doesn't require to construct, binary expression tree is a good way to brainstorm the logic to solve a math query.
So for the query 3 - 6 * 3 / 9 + 5
, the representative binary expression tree is:
plus
|_minus
| |_3
| |_divide
| |_times
| | |_3
| | |_6
| |_9
|_5
to solve above tree, you recursively solve from the leaf level up to the root.
Again, you don't need to construct a tree. It just helps us to see the logic of parsing here:
Given above logic, here is an implementation:
function solve(str) {
var expressionIndex = Math.max(str.lastIndexOf("-"), str.lastIndexOf("+"));
if (expressionIndex === -1) {
expressionIndex = Math.max(str.lastIndexOf("*"), str.lastIndexOf("/"));
}
if (expressionIndex === -1) {
var num = Number.parseInt(str.trim());
if (isNaN(num)) {
throw Exception("not a valid number");
} else {
return num;
}
} else {
var leftVal = solve(str.substring(0, expressionIndex).trim());
var rightVal = solve(str.substring(expressionIndex + 1).trim());
switch (str[expressionIndex]) {
case "+":
return leftVal + rightVal;
case "-":
return leftVal - rightVal;
case "*":
return leftVal * rightVal;
case "/":
return leftVal / rightVal;
}
}
}
function parse(str) {
var expressionIndex = Math.max(str.lastIndexOf("-"), str.lastIndexOf("+"));
if (expressionIndex === -1) {
expressionIndex = Math.max(str.lastIndexOf("*"), str.lastIndexOf("/"));
}
if (expressionIndex === -1) {
var num = Number.parseInt(str.trim());
if (isNaN(num)) {
throw Exception("not a valid number");
} else {
return { type: "number", value: num };
}
} else {
var leftNode = parse(str.substring(0, expressionIndex).trim());
var rightNode = parse(str.substring(expressionIndex + 1).trim());
return {
type: "expression",
value: str[expressionIndex],
left: leftNode,
right: rightNode
};
}
}
console.log(solve("3 - 6 * 3 / 9 + 5"));
console.log(parse("3 - 6 * 3 / 9 + 5"));
Above is a solution for very simple query with only +, -, *, / (no parenthesis, e.g.). For solving a equation like your first example requires a lot more of work.
EDIT: add a parse function to return the tree.
You can do that in following steps:
split()
and split by the +
and -
which will occur after multiplication and division.map()
on array and split()
it again by *
and /
. sovleSingle
and perform addition and subtraction.The function works same as eval as long as there are no brackets ()
.
Note: This doesnot matters the which occurs first among +
and -
or which occurs first among *
and /
. But *,/
should occur before +,-
function solveSingle(arr){
arr = arr.slice();
while(arr.length-1){
if(arr[1] === '*') arr[0] = arr[0] * arr[2]
if(arr[1] === '-') arr[0] = arr[0] - arr[2]
if(arr[1] === '+') arr[0] = +arr[0] + (+arr[2])
if(arr[1] === '/') arr[0] = arr[0] / arr[2]
arr.splice(1,1);
arr.splice(1,1);
}
return arr[0];
}
function solve(eq) {
let res = eq.split(/(\+|-)/g).map(x => x.trim().split(/(\*|\/)/g).map(a => a.trim()));
res = res.map(x => solveSingle(x)); //evaluating nested * and / operations.
return solveSingle(res) //at last evaluating + and -
}
console.log(solve("3 - 6 * 3 / 9 + 5")); //6
console.log(eval("3 - 6 * 3 / 9 + 5")) //6