Let\'s start by considering 2 type of camera rotations:
Camera rotating around a point (Orbit):
def rotate_around_target(self, target, delta):
ri
Here's a little summary with all answers provided in this thread:
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import glm
class Camera():
def __init__(
self,
eye=None, target=None, up=None,
fov=None, near=0.1, far=100000
):
self.eye = eye or glm.vec3(0, 0, 1)
self.target = target or glm.vec3(0, 0, 0)
self.up = up or glm.vec3(0, 1, 0)
self.original_up = glm.vec3(self.up)
self.fov = fov or glm.radians(45)
self.near = near
self.far = far
def update(self, aspect):
self.view = glm.lookAt(
self.eye, self.target, self.up
)
self.projection = glm.perspective(
self.fov, aspect, self.near, self.far
)
def zoom(self, *args):
delta = -args[1] * 0.1
distance = glm.length(self.target - self.eye)
self.eye = self.target + (self.eye - self.target) * (delta + 1)
def load_projection(self):
width = glutGet(GLUT_WINDOW_WIDTH)
height = glutGet(GLUT_WINDOW_HEIGHT)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(glm.degrees(self.fov), width / height, self.near, self.far)
def load_modelview(self):
e = self.eye
t = self.target
u = self.up
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
gluLookAt(e.x, e.y, e.z, t.x, t.y, t.z, u.x, u.y, u.z)
class CameraSkatic(Camera):
def rotate_around_target(self, target, delta):
M = glm.mat4(1)
M = glm.rotate(M, delta.x, glm.vec3(0, 1, 0))
M = glm.rotate(M, delta.y, glm.vec3(1, 0, 0))
self.target = target
T = glm.vec3(0, 0, glm.distance(self.target, self.eye))
T = glm.vec3(M * glm.vec4(T, 0.0))
self.eye = self.target + T
self.up = glm.vec3(M * glm.vec4(self.original_up, 1.0))
def rotate_around_origin(self, delta):
return self.rotate_around_target(glm.vec3(0), delta)
class CameraBPL(Camera):
def rotate_target(self, delta):
right = glm.normalize(glm.cross(self.target - self.eye, self.up))
M = glm.mat4(1)
M = glm.translate(M, self.eye)
M = glm.rotate(M, delta.y, right)
M = glm.rotate(M, delta.x, self.up)
M = glm.translate(M, -self.eye)
self.target = glm.vec3(M * glm.vec4(self.target, 1.0))
def rotate_around_target(self, target, delta):
right = glm.normalize(glm.cross(self.target - self.eye, self.up))
amount = (right * delta.y + self.up * delta.x)
M = glm.mat4(1)
M = glm.rotate(M, amount.z, glm.vec3(0, 0, 1))
M = glm.rotate(M, amount.y, glm.vec3(0, 1, 0))
M = glm.rotate(M, amount.x, glm.vec3(1, 0, 0))
self.eye = glm.vec3(M * glm.vec4(self.eye, 1.0))
self.target = target
self.up = self.original_up
def rotate_around_origin(self, delta):
return self.rotate_around_target(glm.vec3(0), delta)
class CameraRabbid76_v1(Camera):
def rotate_around_target_world(self, target, delta):
V = glm.lookAt(self.eye, self.target, self.up)
pivot = target
axis = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)
R = glm.rotate(glm.mat4(1), angle, axis)
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = V * RP
C = glm.inverse(NV)
targetDist = glm.length(self.target - self.eye)
self.eye = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist
self.up = glm.vec3(C[1])
def rotate_around_target_view(self, target, delta):
V = glm.lookAt(self.eye, self.target, self.up)
pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
axis = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)
R = glm.rotate(glm.mat4(1), angle, axis)
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = RP * V
C = glm.inverse(NV)
targetDist = glm.length(self.target - self.eye)
self.eye = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist
self.up = glm.vec3(C[1])
def rotate_around_target(self, target, delta):
if abs(delta.x) > 0:
self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))
if abs(delta.y) > 0:
self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))
def rotate_around_origin(self, delta):
return self.rotate_around_target(glm.vec3(0), delta)
def rotate_target(self, delta):
return self.rotate_around_target(self.eye, delta)
class CameraRabbid76_v2(Camera):
def rotate_around_target(self, target, delta):
# get directions
los = self.target - self.eye
losLen = glm.length(los)
right = glm.normalize(glm.cross(los, self.up))
up = glm.cross(right, los)
# upright up vector (Gram–Schmidt orthogonalization)
fix_right = glm.normalize(glm.cross(los, self.original_up))
UPdotX = glm.dot(fix_right, up)
up = glm.normalize(up - UPdotX * fix_right)
right = glm.normalize(glm.cross(los, up))
los = glm.cross(up, right)
# tilt around horizontal axis
RHor = glm.rotate(glm.mat4(1), delta.y, right)
up = glm.vec3(RHor * glm.vec4(up, 0.0))
los = glm.vec3(RHor * glm.vec4(los, 0.0))
# rotate around up vector
RUp = glm.rotate(glm.mat4(1), delta.x, up)
right = glm.vec3(RUp * glm.vec4(right, 0.0))
los = glm.vec3(RUp * glm.vec4(los, 0.0))
# set eye, target and up
self.eye = target - los * losLen
self.target = target
self.up = up
def rotate_around_origin(self, delta):
return self.rotate_around_target(glm.vec3(0), delta)
def rotate_target(self, delta):
return self.rotate_around_target(self.eye, delta)
class GlutController():
FPS = 0
ORBIT = 1
def __init__(self, camera, velocity=100, velocity_wheel=100):
self.velocity = velocity
self.velocity_wheel = velocity_wheel
self.camera = camera
def glut_mouse(self, button, state, x, y):
self.mouse_last_pos = glm.vec2(x, y)
self.mouse_down_pos = glm.vec2(x, y)
if button == GLUT_LEFT_BUTTON:
self.mode = self.FPS
elif button == GLUT_RIGHT_BUTTON:
self.mode = self.ORBIT
def glut_motion(self, x, y):
pos = glm.vec2(x, y)
move = self.mouse_last_pos - pos
self.mouse_last_pos = pos
if self.mode == self.FPS:
self.camera.rotate_target(move * 0.005)
elif self.mode == self.ORBIT:
self.camera.rotate_around_origin(move * 0.005)
def glut_mouse_wheel(self, *args):
self.camera.zoom(*args)
def render_text(x, y, text):
glColor3f(1, 1, 1)
glRasterPos2f(x, y)
glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, text.encode("utf-8"))
def draw_plane_yup():
glColor3f(1, 1, 1)
glBegin(GL_LINES)
for i in range(-5, 6):
if i == 0:
continue
glVertex3f(-5, 0, i)
glVertex3f(5, 0, i)
glVertex3f(i, 0, -5)
glVertex3f(i, 0, 5)
glEnd()
glBegin(GL_LINES)
glColor3f(1, 1, 1)
glVertex3f(-5, 0, 0)
glVertex3f(0, 0, 0)
glVertex3f(0, 0, -5)
glVertex3f(0, 0, 0)
glColor3f(1, 0, 0)
glVertex3f(0, 0, 0)
glVertex3f(5, 0, 0)
glColor3f(0, 1, 0)
glVertex3f(0, 0, 0)
glVertex3f(0, 5, 0)
glColor3f(0, 0, 1)
glVertex3f(0, 0, 0)
glVertex3f(0, 0, 5)
glEnd()
def draw_plane_zup():
glColor3f(1, 1, 1)
glBegin(GL_LINES)
for i in range(-5, 6):
if i == 0:
continue
glVertex3f(-5, 0, i)
glVertex3f(5, 0, i)
glVertex3f(i, -5, 0)
glVertex3f(i, 5, 0)
glEnd()
glBegin(GL_LINES)
glColor3f(1, 1, 1)
glVertex3f(-5, 0, 0)
glVertex3f(0, 0, 0)
glVertex3f(0, -5, 0)
glVertex3f(0, 0, 0)
glColor3f(1, 0, 0)
glVertex3f(0, 0, 0)
glVertex3f(5, 0, 0)
glColor3f(0, 1, 0)
glVertex3f(0, 0, 0)
glVertex3f(0, 0, 5)
glColor3f(0, 0, 1)
glVertex3f(0, 0, 0)
glVertex3f(0, 5, 0)
glEnd()
def line(p0, p1, color=None):
c = color or glm.vec3(1, 1, 1)
glColor3f(c.x, c.y, c.z)
glVertex3f(p0.x, p0.y, p0.z)
glVertex3f(p1.x, p1.y, p1.z)
def grid(segment_count=10, spacing=1, yup=True):
size = segment_count * spacing
right = glm.vec3(1, 0, 0)
forward = glm.vec3(0, 0, 1) if yup else glm.vec3(0, 1, 0)
x_axis = right * size
z_axis = forward * size
data = []
i = -segment_count
glBegin(GL_LINES)
while i <= segment_count:
p0 = -x_axis + forward * i * spacing
p1 = x_axis + forward * i * spacing
line(p0, p1)
p0 = -z_axis + right * i * spacing
p1 = z_axis + right * i * spacing
line(p0, p1)
i += 1
glEnd()
def axis(size=1.0, yup=True):
right = glm.vec3(1, 0, 0)
forward = glm.vec3(0, 0, 1) if yup else glm.vec3(0, 1, 0)
x_axis = right * size
z_axis = forward * size
y_axis = glm.cross(forward, right) * size
glBegin(GL_LINES)
line(x_axis, glm.vec3(0, 0, 0), glm.vec3(1, 0, 0))
line(y_axis, glm.vec3(0, 0, 0), glm.vec3(0, 1, 0))
line(z_axis, glm.vec3(0, 0, 0), glm.vec3(0, 0, 1))
glEnd()
class MyWindow:
def __init__(self, w, h):
self.width = w
self.height = h
glutInit()
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
glutInitWindowSize(w, h)
glutCreateWindow('OpenGL Window')
self.startup()
glutReshapeFunc(self.reshape)
glutDisplayFunc(self.display)
glutMouseFunc(self.controller.glut_mouse)
glutMotionFunc(self.controller.glut_motion)
glutMouseWheelFunc(self.controller.glut_mouse_wheel)
glutKeyboardFunc(self.keyboard_func)
glutIdleFunc(self.idle_func)
def keyboard_func(self, *args):
try:
key = args[0].decode("utf8")
if key == "\x1b":
glutLeaveMainLoop()
if key in ['1', '2', '3', '4']:
if key == '1':
self.index_camera = "Skatic"
elif key == '2':
self.index_camera = "BPL"
elif key == '3':
self.index_camera = "Rabbid76_v1"
elif key == '4':
self.index_camera = "Rabbid76_v2"
self.camera = self.cameras[self.index_camera]
self.controller.camera = self.camera
if key in ['o', 'p']:
self.camera.eye = glm.vec3(0, 10, 10)
self.camera.target = glm.vec3(0, 0, 0)
if key == 'o':
self.yup = True
# self.camera.up = glm.vec3(0, 0, 1)
elif key == 'p':
self.yup = False
# self.camera.up = glm.vec3(0, 1, 0)
self.camera.target = glm.vec3(0, 0, 0)
except Exception as e:
import traceback
traceback.print_exc()
def startup(self):
glEnable(GL_DEPTH_TEST)
aspect = self.width / self.height
params = {
"eye": glm.vec3(0, 100, 100),
"target": glm.vec3(0, 0, 0),
"up": glm.vec3(0, 1, 0)
}
self.cameras = {
"Skatic": CameraSkatic(**params),
"BPL": CameraBPL(**params),
"Rabbid76_v1": CameraRabbid76_v1(**params),
"Rabbid76_v2": CameraRabbid76_v2(**params)
}
self.index_camera = "BPL"
self.yup = True
self.camera = self.cameras[self.index_camera]
self.model = glm.mat4(1)
self.controller = GlutController(self.camera)
def run(self):
glutMainLoop()
def idle_func(self):
glutPostRedisplay()
def reshape(self, w, h):
glViewport(0, 0, w, h)
self.width = w
self.height = h
def display(self):
self.camera.update(self.width / self.height)
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
self.camera.load_projection()
self.camera.load_modelview()
glLineWidth(5)
axis(size=70, yup=self.yup)
glLineWidth(1)
grid(segment_count=7, spacing=10, yup=self.yup)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glOrtho(-1, 1, -1, 1, -1, 1)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
info = "\n".join([
"1: Skatic Camera",
"2: BPL Camera",
"3: Rabbid76 Camera (version1)",
"4: Rabbid76 Camera (version2)",
"o: RHS Scene Y-UP",
"p: RHS Scene Z-UP",
])
render_text(-1.0, 1.0 - 0.1, info)
render_text(-1.0, -1.0, "{} camera is active, scene is {}".format(self.index_camera, "Y-UP" if self.yup else "Z-UP"))
glutSwapBuffers()
if __name__ == '__main__':
window = MyWindow(800, 600)
window.run()
So many ways to reinvent the wheel are there not? here is a neat option (adapted from the target camera concept in Opengl Development Cookbook, M.M.Movania, Chapter 2):
Create the new orientation (rotation) matrix first (updated to use accumulated mouse deltas)
# global variables somewhere appropriate (or class variables)
mouseX = 0.0
mouseY = 0.0
def rotate_around_target(self, target, delta):
global mouseX
global mouseY
mouseX += delta.x/5.0
mouseY += delta.y/5.0
glm::mat4 M = glm::mat4(1)
M = glm::rotate(M, delta.z, glm::vec3(0, 0, 1))
M = glm::rotate(M, mouseX , glm::vec3(0, 1, 0))
M = glm::rotate(M, mouseY, glm::vec3(1, 0, 0))
Use the distance to get a vector and then translate this vector by the current rotation matrix
self.target = target
float distance = glm::distance(self.target, self.eye)
glm::vec3 T = glm::vec3(0, 0, distance)
T = glm::vec3(M*glm::vec4(T, 0.0f))
Get the new camera eye position by adding the translation vector to the target position
self.eye = self.target + T
Recalculate the orthonormal basis (of which you have just the UP vector to be done)
# assuming self.original_up = glm::vec3(0, 1, 0)
self.up = glm::vec3(M*glm::vec4(self.original_up, 0.0f))
# or
self.up = glm::vec3(M*glm::vec4(glm::vec3(0, 1, 0), 0.0f))
5...and then you can try it out by updating a view matrix with a lookAt function
self.view = glm.lookAt( self.eye, self.target, self.up)
It's the simplest of concepts for these kinds of transform problems/solutions I have found to date. I tested it in C/C++ and just modified it to pyopengl syntax for you (faithfully I hope). Let us know how it goes (or not).
I recommend to do a rotation around a pivot in view space
You have to know the view matrix (V
). Since the view matrix is encoded in self.eye
, self.target
and self.up
, it has to be computed by lookAt
:
V = glm.lookAt(self.eye, self.target, self.up)
Compute the pivot
in view space, the rotation angle and the rotation axis. The axis is in this case the right rotated direction, where the y axis has to be flipped:
pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
axis = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)
Set up the rotation matrix R
and calculate the ration matrix around the pivot RP
. Finally transform the view matrix (V
) by the rotation matrix. The result is the new view matrix NV
:
R = glm.rotate( glm.mat4(1), angle, axis )
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = RP * V
Decode the self.eye
, self.target
and self.up
from the new view matrix NV
:
C = glm.inverse(NV)
targetDist = glm.length(self.target - self.eye)
self.eye = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist
self.up = glm.vec3(C[1])
Full coding of the method rotate_around_target_view
:
def rotate_around_target_view(self, target, delta):
V = glm.lookAt(self.eye, self.target, self.up)
pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
axis = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)
R = glm.rotate( glm.mat4(1), angle, axis )
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = RP * V
C = glm.inverse(NV)
targetDist = glm.length(self.target - self.eye)
self.eye = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist
self.up = glm.vec3(C[1])
Finally it can be rotated around the origin of the world and the the eye position or even any other point.
def rotate_around_origin(self, delta):
return self.rotate_around_target_view(glm.vec3(0), delta)
def rotate_target(self, delta):
return self.rotate_around_target_view(self.eye, delta)
Alternatively the rotation can be performed in world space on the model. The solution is very similar.
The rotation is done in world space, so the pivot hasn't to be transforms to view space and The rotation is applied before the view matrix (NV = V * RP
):
def rotate_around_target_world(self, target, delta):
V = glm.lookAt(self.eye, self.target, self.up)
pivot = target
axis = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)
R = glm.rotate( glm.mat4(1), angle, axis )
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = V * RP
C = glm.inverse(NV)
targetDist = glm.length(self.target - self.eye)
self.eye = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist
self.up = glm.vec3(C[1])
def rotate_around_origin(self, delta):
return self.rotate_around_target_world(glm.vec3(0), delta)
Of course both solutions can be combined. By dragging vertical (up and down), the view can be rotated on its horizontal axis. And by dragging horizontal (left and right) the model (world) can be rotated around its (up) axis:
def rotate_around_target(self, target, delta):
if abs(delta.x) > 0:
self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))
if abs(delta.y) > 0:
self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))
I order to achieve a minimal invasive approach, considering the original code of the question, I'll make the following suggestion:
After the manipulation the target of the view should be the input parameter target
of the function rotate_around_target
.
A horizontal mouse movement should rotate the view around the up vector of the world
a vertical mouse movement should tilt the view around current horizontal axis
I came up to the following approach:
Calculate the current line of sight (los
), up vector (up
) and horizontla axis (right
)
Upright the up vector, by projecting the up vector to a plane which is given by the original up vector and the current line of sight. This is don by Gram–Schmidt orthogonalization.
Tilt around the current horizontal axis. This means los
and up
is rotated around the right
axis.
Rotate around the up vector. los
and right
is rotated around up
.
Calculate set the up and calculate the eye and target position, where the target is set by the input parameter target:
def rotate_around_target(self, target, delta):
# get directions
los = self.target - self.eye
losLen = glm.length(los)
right = glm.normalize(glm.cross(los, self.up))
up = glm.cross(right, los)
# upright up vector (Gram–Schmidt orthogonalization)
fix_right = glm.normalize(glm.cross(los, self.original_up))
UPdotX = glm.dot(fix_right, up)
up = glm.normalize(up - UPdotX * fix_right)
right = glm.normalize(glm.cross(los, up))
los = glm.cross(up, right)
# tilt around horizontal axis
RHor = glm.rotate(glm.mat4(1), delta.y, right)
up = glm.vec3(RHor * glm.vec4(up, 0.0))
los = glm.vec3(RHor * glm.vec4(los, 0.0))
# rotate around up vector
RUp = glm.rotate(glm.mat4(1), delta.x, up)
right = glm.vec3(RUp * glm.vec4(right, 0.0))
los = glm.vec3(RUp * glm.vec4(los, 0.0))
# set eye, target and up
self.eye = target - los * losLen
self.target = target
self.up = up