The numpy mean function works perfectly fine when the dimensions are the same.
a = np.array([[1, 2], [3, 4]])
a.mean(axis=1)
array([ 1.5, 3.5])
Here's an approach -
# Store length of each subarray
lens = np.array(map(len,a))
# Generate IDs based on the lengths
IDs = np.repeat(np.arange(len(lens)),lens)
# Use IDs to do bin-based summing of a elems and divide by subarray lengths
out = np.bincount(IDs,np.concatenate(a))/lens
Sample run -
In [34]: a # Input array
Out[34]: array([[1, 2], [3, 4, 5]], dtype=object)
In [35]: lens = np.array(map(len,a))
...: IDs = np.repeat(np.arange(len(lens)),lens)
...: out = np.bincount(IDs,np.concatenate(a))/lens
...:
In [36]: out # Average output
Out[36]: array([ 1.5, 4. ])
Simpler alternative way using list comprehension -
In [38]: [np.mean(i) for i in a]
Out[38]: [1.5, 4.0]