Creating a NumPy array directly from __array_interface__

后端 未结 2 1064
情话喂你
情话喂你 2020-12-21 04:35

Suppose I have an __array_interface__ dictionary and I would like to create a numpy view of this data from the dictionary itself. For example:

b         


        
相关标签:
2条回答
  • 2020-12-21 05:23

    Here's another approach:

    import numpy as np
    
    
    def arr_from_ptr(pointer, typestr, shape, copy=False,
                     read_only_flag=False):
        """Generates numpy array from memory address
        https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html
    
        Parameters
        ----------
        pointer : int
            Memory address
    
        typestr : str
            A string providing the basic type of the homogenous array The
            basic string format consists of 3 parts: a character
            describing the byteorder of the data (<: little-endian, >:
            big-endian, |: not-relevant), a character code giving the
            basic type of the array, and an integer providing the number
            of bytes the type uses.
    
            The basic type character codes are:
    
            - t Bit field (following integer gives the number of bits in the bit field).
            - b Boolean (integer type where all values are only True or False)
            - i Integer
            - u Unsigned integer
            - f Floating point
            - c Complex floating point
            - m Timedelta
            - M Datetime
            - O Object (i.e. the memory contains a pointer to PyObject)
            - S String (fixed-length sequence of char)
            - U Unicode (fixed-length sequence of Py_UNICODE)
            - V Other (void * – each item is a fixed-size chunk of memory)
    
            See https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
    
        shape : tuple
            Shape of array.
    
        copy : bool
            Copy array.  Default False
    
        read_only_flag : bool
            Read only array.  Default False.
        """
        buff = {'data': (pointer, read_only_flag),
                'typestr': typestr,
                'shape': shape}
    
        class numpy_holder():
            pass
    
        holder = numpy_holder()
        holder.__array_interface__ = buff
        return np.array(holder, copy=copy)
    
    

    Usage:

    # create array
    arr = np.ones(10)
    
    # grab pointer from array
    pointer, read_only_flag = arr.__array_interface__['data']
    
    # constrct numpy array from an int pointer
    arr_out = arr_from_ptr(pointer, '<f8', (10,))
    
    # verify it's the same data
    arr[0] = 0
    assert np.allclose(arr, arr_out)
    
    0 讨论(0)
  • 2020-12-21 05:36

    correction - with the right 'data' value your holder works in np.array:

    np.array is definitely not going to work since it expects an iterable, some things like a list of lists, and parses the individual values.

    There is a low level constructor, np.ndarray that takes a buffer parameter. And a np.frombuffer.

    But my impression is that x.__array_interface__['data'][0] is a integer representation of the data buffer location, but not directly a pointer to the buffer. I've only used it to verify that a view shares the same databuffer, not to construct anything from it.

    np.lib.stride_tricks.as_strided uses __array_interface__ for default stride and shape data, but gets the data from an array, not the __array_interface__ dictionary.

    ===========

    An example of ndarray with a .data attribute:

    In [303]: res
    Out[303]: 
    array([[ 0, 20, 50, 30],
           [ 0, 50, 50,  0],
           [ 0,  0, 75, 25]])
    In [304]: res.__array_interface__
    Out[304]: 
    {'data': (178919136, False),
     'descr': [('', '<i4')],
     'shape': (3, 4),
     'strides': None,
     'typestr': '<i4',
     'version': 3}
    In [305]: res.data
    Out[305]: <memory at 0xb13ef72c>
    In [306]: np.ndarray(buffer=res.data, shape=(4,3),dtype=int)
    Out[306]: 
    array([[ 0, 20, 50],
           [30,  0, 50],
           [50,  0,  0],
           [ 0, 75, 25]])
    In [324]: np.frombuffer(res.data,dtype=int)
    Out[324]: array([ 0, 20, 50, 30,  0, 50, 50,  0,  0,  0, 75, 25])
    

    Both of these arrays are views.

    OK, with your holder class, I can make the same thing, using this res.data as the data buffer. Your class creates an object exposing the array interface.

    In [379]: holder=numpy_holder()
    In [380]: buff={'data':res.data, 'shape':(4,3), 'typestr':'<i4'}
    In [381]: holder.__array_interface__ = buff
    In [382]: np.array(holder, copy=False)
    Out[382]: 
    array([[ 0, 20, 50],
           [30,  0, 50],
           [50,  0,  0],
           [ 0, 75, 25]])
    
    0 讨论(0)
提交回复
热议问题